Implications of Scavenger Receptors in the Safe Development of Nanotherapeutics

Authors

  • Jonathan Shannahan, Wei Bai, Jared Brown

Abstract

Nanomaterials (NMs) are being utilized in a variety of biomedical applications including drug delivery, diagnostics, and therapeutic targeting. These applications are made possible due to the unique physicochemical properties that are exhibited at the nanoscale. To ensure safe development of NMs for clinical use, it is necessary to understand their interactions with cells and specifically cell surface receptors, which will facilitate either their toxicity and/or clinical function. Recently our research and others have investigated the role of scavenger receptors in mediating NM-cell interactions and responses. Scavenger receptors are expressed by a variety of cell types that are first to encounter NMs during clinical use such as macrophages and endothelial cells. Scavenger receptors are recognized to facilitate uptake of a wide variety of ligands ranging from foreign substances to endogenous lipids/proteins. While interaction of NMs with scavenger receptors may allow therapeutic targeting in some instances, it also presents a challenge for the stealth delivery of NMs and avoidance of the scavenging capability of this class of receptors. Due to their role in facilitating immune responses, scavenger receptor-mediated inflammation is also of concern following NM delivery. The research highlight in this brief review intends to summarize our current understanding regarding the consequences of NM-scavenger receptor interactions.

Published

2015-11-30

Issue

Section

Review