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The understanding of cell death mechanisms is crucial for the development and application of novel anti-cancer 
therapies to avoid or circumvent drug-resistance in refractory malignancies. Impairment of apoptotic cell death 
plays a major role in therapy resistance and relapse of acute lymphoblastic leukemia (ALL) patients. Therefore, 
efforts are being directed at new agents reactivating apoptosis or inducing alternative cell death pathways such 
as necroptosis, a regulated form of necrosis. In a recent study published in Science Translational Medicine we 
show that the IAP (inhibitor of apoptosis proteins) inhibitor birinapant potently induces cell death in 
patient-derived ALL cells in vitro and in vivo through a receptor-interacting protein kinase 1- (RIP1) dependent 
mechanism. To define the cell death modality induced downstream of RIP1, we used a multicolor lentiCRISPR 
approach that allows simultaneous knockout of multiple genes. We observed that apoptosis and necroptosis are 
induced simultaneously as the inhibition of both pathways is required to restore cell viability upon birinapant 
treatment. This induction of dual cell death makes birinapant and other IAP inhibitors interesting agents for the 
treatment of refractory or drug resistant malignancies. 
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Eliminating cancer cells is the ultimate goal of standard 
chemotherapies, radiotherapy, novel targeted therapies and in 
general all anticancer treatments. Most of those therapies rely 
on the induction of regulated cell death. Therefore, the 
understanding of programmed cell death pathways and the 
mechanisms by which they are induced and regulated is key 
for the development of such treatments.  

Apoptosis is the best described pathway of programmed 
cell death. It is morphologically characterized by a decrease 
of the cellular volume, mitochondrial outer membrane 
permeabilization (MOMP), chromatin condensation, nuclear 
fragmentation as well as membrane blebbing. It can be 

classified as intrinsic or extrinsic depending on the signaling 
cascade mediating it. Intrinsic apoptosis can be induced by 
various intracellular stress signals, and it is mediated by the 
disruption of the balance of pro- and anti-apoptotic BCL2 
family proteins. This leads to MOMP, the formation of a 
caspase-9 complex (termed apoptosome) and subsequent 
caspase-3 activation. On the other hand, extrinsic apoptosis is 
induced by the activation of death receptors by their 
extracellular ligands. This leads then to the recruitment of an 
intracellular death-inducing signaling complex (DISC) which 
activates the initiator caspases -8 and -10, which 
subsequently activate the effector caspases -3 and -7. The 
molecular mechanisms of apoptosis have been reviewed 
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extensively [1-3]. 

Evasion of apoptosis is one of the hallmarks of cancer and 
is tightly linked to drug resistance, therapy failure and 
relapse. Apoptosis resistance is multifactorial, hence various 
mechanisms have been described by which cancer cells can 
escape apoptotic cell death. Some relevant escape 
mechanisms include de-regulation of the pro- and 
anti-apoptotic BCL2 family proteins, compensatory 
activation of autophagy (a regulated process of degradation 
and recycling of cellular components), and defects on death 
receptor signaling [4-6]. The inability of malignant cells to 
undergo apoptosis represents a major clinical challenge for 
the treatment of childhood acute lymphoblastic leukemia 
(ALL) among many other malignancies. Despite the increase 
in the long-term survival achieved in the last decades, around 
20% of ALL patients show a poor clinical response to the 
frontline treatments and suffer relapse. Relapsed patients 
experience a dismal outcome. Because most anticancer 
drugs, including the frontline agents used for the treatment of 
ALL (vincristine, dexamethasone and L-asparaginase, short 
VXL), act through the induction of apoptosis in cancer cells, 
defects in the apoptotic pathway can confer resistance to 
those compounds [7]. Besides classical chemotherapeutic 
drugs, apoptosis impairment also plays a role in the 
resistance to many novel targeted therapies. For instance, 
BCR/ABL+ leukemias can become resistant to the 
BCR/ABL inhibitor imatinib by modulating the pro- and 
anti-apoptotic balance [8]. Since the overexpression of 
anti-apoptotic factors is a common resistance mechanism for 
many drugs in various malignancies, numerous efforts have 
been directed to the development of drugs that can restore 
apoptotic cell death. This is the case of the small molecule 
BH3 mimetics, which target one or more anti-apoptotic 
proteins, and have been shown to have strong activity against 
many cancer entities, especially hematologic malignancies 
[8-11]. Other drugs designed to restore the apoptotic response 
include the inhibitors and the inhibitors of the IAPs (inhibitor 
of apoptosis proteins) called SMAC (second mitochondrial 
activator of caspases) mimetics (SM) [12].   

However, as a general strategy, directly targeting the 
defects in the apoptotic machinery to reactivate apoptotic cell 
death is potentially problematic. Given the polyclonality of 
many cancers, it is likely that different clones dysregulate 
apoptosis through different mechanisms. This renders several 
targets responsible for the drug resistance [6]. We and others 
hypothesize that simultaneously activating alternative cell 
death pathways independent of apoptosis may be an effective 
approach to target and overcome resistance.   

Necroptosis, or programmed necrosis, is a form of 
regulated cell death independent on the apoptotic machinery. 

Its activation may thus represent a promising alternative to 
induce cell death in resistant cancer cells. Necroptotic cells 
exhibit specific morphological features such as increase of 
the cellular volume, swelling of the mitochondria and rupture 
of the plasma membrane [1, 13]. Mechanistically, necroptosis 
can be triggered by various stimuli including ligation of 
death receptors such as TNFR1. After ligation of TNFR1, the 
activation of necroptosis depends on the cellular context and 
has been mainly studied in conditions of experimental 
apoptosis blockade [1, 14, 15]. After TNFR1 activation, multiple 
proteins are recruited to its intracellular domain, including 
RIP1, a central player in the control of cell survival, 
apoptosis and necroptosis. The switch of RIP1 from a 
pro-survival to a pro-death function is controlled, among 
others, through its ubiquitination by cIAPs, which 
ubiquitinate RIP1 to maintain its pro-survival state [16-18]. 
Upon deubiquitination, RIP1 can form a cytosolic complex 
with RIP3, FADD (Fas associated death domain) and 
caspase-8 and initiate apoptosis through caspase-8 activation 
or necroptosis through RIP1 and RIP3 phosphorylation. For 
the final execution of necroptosis, RIP3 phosphorylates 
MLKL (mixed lineage kinase-domain like) which 
translocates to and disrupts the plasma membrane [19-21]. The 
molecular mechanisms of necroptosis have been reviewed in 
detail elsewhere [1, 15, 16]. 

Since necroptosis can induce cell death bypassing the 
apoptosis blockade, various efforts are being directed to the 
development of necroptosis-inducing compounds for the 
treatment of drug resistant cancer. One of such compounds is 
the small molecule obatoclax (GX15-070). We previously 
described that obatoclax sensitizes ALL cell lines and 
refractory patient-derived cells to dexamethasone in vitro and 
in vivo by inducing autophagy and RIP1 dependent 
necroptosis [22]. Another class of compounds with potential 
cytotoxic activity in apoptosis resistant cancer cells are SM. 
These small molecule peptidomimetics target one or more 
IAPs (mainly cIAP1, cIAP2 and XIAP), which are 
overexpressed in certain cancers including leukemias [23, 24], 
and have been shown to facilitate cancer cell survival by 
inducing constitutive RIP1 ubiquitination in cancer cells [18]. 
While cIAP1 and cIAP2 are responsible for ubiquitinating 
RIP1, thus maintaining its pro-survival function [17, 18], XIAP 
can bind and directly inhibit caspases -3, -7 and -9 [25-27]. 
Therefore, SM can lead on the one side to the liberation of 
effector caspases, and on the other side to the 
deubiquitination of RIP1 with subsequent formation of cell 
death complexes. SM can act as chemosensitizers and 
synergize with a variety of compounds including death 
receptor ligands such as TNFα, cytotoxic drugs or 
radiotherapy [28-32]. Synergy has also been reported for SM 
with glucocorticoids in ALL [33], with the targeted therapies 
against BCR/ABL- (nilotinib) and FLT3-positive leukemias 
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(PKC412) [34], and with p38 or MK2 inhibitors in AML 
(acute myeloid leukemia) [35]. Although generally more 
effective in combination, some SM such as BV6, LCL161 
and birinapant have been described to also induce cell death 
as single agents in various cancer cell lines including various 
subtypes of leukemia [30, 32, 34, 36].  

We assessed the single agent activity of the SM birinapant 
and LCL161 both in vitro and in vivo in a broad range of 
patient-derived pediatric B- and T-ALL samples with a 
special emphasis on refractory and relapse cases [37]. 
Birinapant potently induced cell death in around 30% of 
B-ALL cases at concentrations in the low nanomolar range 
and was less potent against T-ALL. The response to 
LCL161, which has been found by others to induce 
insufficient responses in B-ALL [38], was remarkably less 
potent in vitro and ineffective in vivo. The structural 
differences between birinapant and LCL161 might account 
for the observed differences in activity. Other groups have 
shown similar promising results for SM in other subtypes of 
leukemia. Richmond et al. have shown that Philadelphia-like 
ALL samples have a particularly high sensitivity to 
birinapant compared to other subtypes of ALL. Furthermore, 
birinapant enhanced the response of patient-derived samples 
in vivo to the clinical chemotherapeutic regiment VXL [39]. 
Similarly, Brumatti et al. show that birinapant effectively 
kills primary cells harboring the MLL (myeloid/lymphoid or 
mixed-lineage leukemia 1) translocation in AML mouse 
models and patient-derived AML samples at concentrations 
in the nanomolar range [40]. A different SM, BV6, has also 
been shown to be effective against primary MLL [41]. 

We used lentiCRISPR (clustered regularly interspaced 
short palindromic repeats) technology to show that the 
activity of birinapant is completely dependent on RIP1 in 
vitro and in vivo. Patient-derived ALL cells were transduced 
with lentiCRISPR targeting RIP1 and carrying the 
fluorescent marker EGFP. We then xenotransplanted these 
ALL cells into immunodeficient NSG (NOD scid IL2 
receptor gamma null) mice and monitored the expansion of 
WT (EGFP-negative) and knockout (EGFP-positive) cells 
under treatment with birinapant. We observed a strong 
selection of the RIP1 deficient cells in vivo and confirmed 
also in vitro their resistance to SM. The loss of RIP1 did not 
affect the engraftment kinetics of patient-derived B-ALL in 
vivo [37].  

To further investigate the downstream cell death 
mechanism induced by birinapant in this context, we 
developed a multicolor lentiCRISPR approach to target 
multiple cell death genes at the same time. We 
simultaneously transduced patient-derived cells with 
lentiCRISPR targeting RIP3, caspase-8, FADD or MLKL, 

each expressing a different fluorescent marker, which 
allowed us to monitor the expansion of single, double, triple 
and quadruple knockout cells under birinapant treatment in 
vivo. Knockout of both an apoptotic (FADD or caspase-8) 
and a necroptotic (RIP3 or MLKL) gene was necessary to 
rescue cell viability, and targeting either pathway alone was 
not sufficient to achieve resistance. In contrast with many 
studies showing that caspase inhibition is necessary to induce 
necroptosis, we found that apoptosis and necroptosis were 
simultaneously activated in around 40% of 
birinapant-sensitive B-ALL patient-derived samples and in 
the Jurkat cell line [37]. However, this mixed cell death 
phenotype was not observed in response to birinapant 
treatment in AML, where the co-treatment with the 
pan-caspase inhibitor Z-VAD or the clinical caspase-8 
inhibitor emricasan actually increased the response to 
birinapant by TNFR1-dependent necroptosis. Interestingly, 
the cell death induced by birinapant+ZVAD in that context 
was not rescued by neither RIP3 nor MLKL deficiency [40]. 
This together with our observation that around 20% of 
birinapant-sensitive B-ALL cases are not rescued by the 
combined inhibition of apoptosis and necroptosis indicate 
that other uncharacterized cell death mechanisms besides 
necroptosis and apoptosis might be activated by RIP1 after 
SM treatment. 

Considering that the current clinical challenge in the 
treatment of ALL is the appearance of drug resistance and 
relapse, we wanted to evaluate if birinapant would still be 
active against heavily pre-treated refractory and relapsed 
samples. To answer this question we screened 
CRISPR-generated RIP1 knockout patient-derived B-ALL 
cells for their response to a panel of relevant anti-leukemic 
drugs and found that RIP1 is not required for the response to 
drugs such as vincristine, dexamethasone or doxorubicin 
among others, indicating that there would be no mutational 
pressure on RIP1 which could be selected for during the 
treatment in refractory and relapse patients. Additionally, our 
initial drug screen included 11 samples from relapse cases, 6 
out of which showed IC50s lower than 500nM [37]. Similar 
conclusions were derived from the studies of Richmond et 
al., who observed that birinapant was still effective in 
reducing the leukemic burden in vivo in patient-derived 
xenografts that had relapsed after pre-treatment with 
birinapant or VXL [39].  

In contrast to the potent activity observed in vitro and in 
vivo against hematologic malignancies, no anti-tumor 
activity of birinapant as a single agent could be detected in 
the phase 2 clinical trial for platinum-resistant and -refractory 
ovarian cancer [42]. Single agent activity of SM seems to 
be cancer dependent, with hematologic malignancies 
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representing a subgroup with enhanced sensitivity. 
Therefore, establishing molecular biomarkers that predict a 
response to SM is of great importance and many scientists 
are pursuing this goal. In many cases, especially in the 
context of cell lines, the production of TNFα in the basal 
state or after treatment with SM has been shown to correlate 
with or be necessary for the induction of cell death. In a 
similar direction, the response to SM has been shown to be 
dependent on TNFR1 or the TNFR1 signaling pathway, since 
either treatment with TNFR1 blocking antibodies or TNFR1 
knockout confer resistance to SM, and it’s expression has 
been found to be higher in SM sensitive cases [40, 41]. 
However, we and others have found that either TNFα 
blockade or TNFR1 targeting were not sufficient to rescue 
from SM-induced cell death [29, 33, 37, 43, 44]. Furthermore, most 
of the patient-derived B-ALL samples that we tested had 
very low expression of TNFα both before and after treatment, 

with no differences between birinapant-responders and -non 
responders. Other biomarkers of response to SM have been 
proposed, including cellular levels and activity of caspases-8 
and -10 [45, 46], the ability to form the ripoptosome in response 
to treatment [47] or cIAP2 upregulation or stabilization [48, 49]. 

In conclusion, to achieve success in the treatment of 
cancer, resistance to cell death has to be avoided or 
overcome. Directly targeting the causes of apoptosis 
blockade or inducing alternative mechanisms of cell death 
such as necroptosis are two attractive strategies that have 
been developed to target such resistance, and SM are 
compounds which can do both. Our data suggest that the SM 
birinapant has clinical potential for the treatment of 
refractory and relapsed ALL by inducing apoptosis and 
necroptosis in parallel. Simultaneously activating two cell 
death mechanisms, either by a single compound or by a 

Figure 1. SMAC mimetics induce concurrent apoptosis and necroptosis in 
precursor B-ALL and are therefore active against apoptosis-resistant cells 
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combination, may be beneficial for cancer therapy by 
impairing the appearance of resistance mechanisms (Figure 
1). Clearly, a deeper understanding of the molecular 
mechanisms that govern cell death responses, such as 
necroptosis, as well as the identification of biomarkers that 
indicate activation of the pathway will be required to move 
clinical application of compounds such as SMAC mimetics 
forward.  
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