http://www.smartscitech.com/index.php/rci

RESEARCH HIGHLIGHT

Mutual inhibitory mechanisms between PPARγ and Hif-1α: implication in pulmonary hypertension

Kai Yang^{1, 2}, Qian Jiang^{1, 2}, Ziyi Wang¹, Meichan Li¹, Qian Zhang¹, Wenju Lu¹, Jian Wang^{1, 2}

¹State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China ²Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA

Correspondence: Jian Wang E-mail: jwang31@jhmi.edu Received: February 10, 2015 Published online: April 02, 2015

> Transcription factor hypoxia-inducible factor 1α (Hif- 1α) is known for its crucial role in promoting the pathogenesis of pulmonary hypertension (PH). Previous studies have indicated the in-depth mechanisms that Hif- 1α increases the distal pulmonary arterial (PA) pressure and vascular remodeling by triggering the intracellular calcium homeostasis, especially the store-operated calcium entry (SOCE) process. In our recent research paper published in the *Journal of Molecular Medicine*, we found that the transcription factor peroxisome proliferator-activated receptor γ (PPAR γ) activation could attenuate the PH pathogenesis by suppressing the elevated distal PA pressure and vascular remodeling. Moreover, these effects are likely mediated through the inhibition of SOCE by suppressing Hif- 1α . These results provided convincing evidence and novel mechanisms in supporting the protective roles of PPAR γ on PH treatment. Then, by using comprehensive loss-of-function and gain-of-function strategies, we further identified the presence of a mutual inhibitory mechanism between PPAR γ and Hif- 1α . Basically, under chronic hypoxic stress, accumulated Hif- 1α leads to abolished expression of PPAR γ and progressive imbalance between PPAR γ and Hif- 1α , which promotes the PH progression; however, targeted PPAR γ restoration approach reversely inhibits Hif- 1α level and Hif- 1α mediated signaling transduction, which subsequently attenuates the elevated pulmonary arterial pressure and vascular remodeling under PH pathogenesis.

Keywords: Pulmonary hypertension; PPARy; Hif-1a; SOCE

To cite this article: Kai Yang, *et al.* Mutual inhibitory mechanisms between PPAR γ and Hif-1 α : implication in pulmonary hypertension. Receptor Clin Invest 2015; 2: e626. doi: 10.14800/rci.626.

PPARγ inhibits pulmonary vascular remodeling by regulating intracellular calcium homeostasis in PASMCs

Peroxisome proliferator-activated receptors (PPARs), which are ubiquitously expressed in pulmonary vascular endothelial and smooth muscle cells ^[1, 2], are a group of ligand-activated nuclear hormone receptors superfamily with increasingly diverse functions as transcriptional regulators. There are three subtypes of PPARs: α , β/δ and γ ^[3]. PPAR γ is originally known to participate in the processes of adipocyte differentiation and lipid metabolism ^[4]. However recently,

accumulating evidences have indicated that decreases of PPAR γ expression and function are associated with pulmonary hypertension (PH), while stimulating PPAR γ acts a beneficial treatment for PH in experimental animal models ^[3, 5-8]. Similarly, in our recent published paper ^[9], we found that PPAR γ agonist rosiglitazone significantly attenuated the elevated pulmonary arterial pressure and distal pulmonary arterial remodeling in both chronic hypoxia-induced pulmonary hypertension (CHPH) and monocrotaline-induced PH (MCT-PH) rats by rescuing hypoxia-downregulated PPAR γ level. However interestingly, PPAR γ agonist

http://www.smartscitech.com/index.php/rci

rosiglitazone did not reverse the hypoxia-enhanced right ventricle hypertrophy, featured by the Fulton index (RV/LV+S). These results suggest a potential direct therapeutic role of PPAR γ on the distal pulmonary vasculature, but not the heart. Moreover, in accompany with our previous study, PPAR γ activation leads to attenuated hypoxia-elevated expression of store-operated calcium channels (SOCCs) component proteins canonical transient receptor potential 1 (TRPC1) and TRPC6, as well as hypoxia-triggered store operated calcium entry (SOCE) and baseline free intracellular calcium concentration ([Ca²⁺]_i), which eventually caused suppressed proliferation of distal pulmonary arterial smooth muscle cells (PASMCs) and inhibited vascular thickening and remodeling of distal pulmonary arteries ^[9, 10].

Negative modulation of PPAR γ on Hif-1 α in CHPH and mutual inhibition between Hif-1 α and PPAR γ

Hypoxia inducible factor 1 (Hif-1) is a transcriptional activator that mediates gene expression changes by responding to cellular oxygen concentration changes [11, 12]. Hif-1 consists of two isoforms Hif-1 α and Hif-1 β , which functions by forming heterodimer. Hif-1 β stably expresses under both normoxic and hypoxic conditions, while Hif-1 α protein undergoes rapid degredation under normoxia but escapes oxygen dependent degradation and is stabilized under hypoxia. Thus, the activity of Hif-1 is dependent on Hif-1 α ^[13, 14]. Previous studies have demonstrated that Hif-1 α plays a crucial contributive role in PH by inducing the TRPC-SOCE-[Ca²⁺]_i signaling axis ^[15]. Moreover, the complicated regulative mechanism between PPARy and Hif-1 α in different cell and tissue types has been discussed in several previous studies. On one hand, PPARy has been shown inhibited by Hif-1a activation upon hypoxic stress in the process of adipocyte differentiation ^[16]; while Hif-1 α activation was also reported to upregulate PPARy expression in cardiomyocytes in response to pathologic stress of cardiac metabolism ^[17]. On the other hand, PPARy could act upstream and modulate the expression of Hif-1 α in allergic airway disease of mice [18]. In our study, by using both loss-of-function and gain-of-function strategies, results showed that PPAR γ activation could suppress Hif-1 α , explaining that PPARy attenuates the highlighted TRPC-SOCE- $[Ca^{2+}]_i$ signaling axis in hypoxic PASMCs by targeting to Hif-1a. Moreover, our results further demonstrated that PPARy and Hif-1 α share a mutual inhibitory regulation mechanism^[9]. These results presented the first demonstration that PPAR γ and Hif-1 α share mutual inhibition and their relative imbalance leads to the pathogenesis of PH, while the PPARy targeted rescue approach potentially reversed the PPAR γ -Hif-1 α imbalance and attenuated the disease development of PH.

PPARγ-Hif-1α counterbalance, new insights into pathogenesis or therapeutics of PH

Based on the finding of the mutual inhibitory mechanism between PPAR γ and Hif-1 α , our data presented more convincing evidence to prove the therapeutic effects of PPAR γ on PH treatment and showed new insights into the roles and molecular mechanisms of PPAR γ on PASMCs proliferation and PA remodeling under PH. Application of strategies to modulate the balance between PPAR γ and Hif-1 α might be useful novel approaches for the treatment of PH and worth further evaluation in the future study.

Conflicting interests

The authors have declared that no competing interests exist.

Acknowledgments

This project is funded by National Institute of Health of USA (R01-HL093020), National Natural Science Foundation of China (81173112, 81470246, 81170052, 81220108001), Guangzhou Department of Education Yangcheng Scholarship (12A001S), Guangzhou Department of Natural Science (2014Y2-00167) and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2014, W Lu).

References

- 1. Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, *et al.* Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 2003;92:1162-1169.
- 2. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, *et al.* International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006;58:726-741.
- 3. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990;347:645-650.
- 4. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994;79:1147-1156.
- 5. Matsuda Y, Hoshikawa Y, Ameshima S, Suzuki S, Okada Y, Tabata T, *et al.* Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats. Nihon Kokyuki Gakkai Zasshi 2005;43:283-288.
- Crossno JT, Jr., Garat CV, Reusch JE, Morris KG, Dempsey EC, McMurtry IF, *et al.* Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 2007;292:L885-897.
- 7. Nisbet RE, Bland JM, Kleinhenz DJ, Mitchell PO, Walp ER,

http://www.smartscitech.com/index.php/rci

Sutliff RL, *et al.* Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol 2010;42:482-490.

- Kim EK, Lee JH, Oh YM, Lee YS, Lee SD. Rosiglitazone attenuates hypoxia-induced pulmonary arterial hypertension in rats. Respirology 2010;15:659-668.
- 9. Wang Y, Lu W, Yang K, Zhang J, Jia J, Yun X, *et al.* Peroxisome proliferator-activated receptor gamma inhibits pulmonary hypertension targeting store-operated calcium entry. J Mol Med (Berl) 2015;93:327-342.
- Wang J, Yang K, Xu L, Zhang Y, Lai N, Jiang H, *et al.* Sildenafil inhibits hypoxia-induced transient receptor potential canonical protein expression in pulmonary arterial smooth muscle via cGMP-PKG-PPARgamma axis. Am J Respir Cell Mol Biol 2013;49:231-240.
- 11. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992;12:5447-5454.
- 12. Wiener CM, Booth G, Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 1996;225:485-488.
- 13. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2

homeostasis. Curr Opin Genet Dev 1998;8:588-594.

- Semenza GL. Regulation of oxygen homeostasis byhypoxia-inducible factor 1. Physiology (Bethesda) 2009;24:97-106.
- Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 2006;98:1528-1537.
- 16. Yun Z, Maecker HL, Johnson RS, Giaccia AJ. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2002;2:331-341.
- 17. Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, *et al.* Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 2009;9:512-524.
- Lee KS, Kim SR, Park SJ, Park HS, Min KH, Jin SM, *et al.* Peroxisome proliferator activated receptor-gamma modulates reactive oxygen species generation and activation of nuclear factor-kappaB and hypoxia-inducible factor lalpha in allergic airway disease of mice. J Allergy Clin Immunol 2006;118:120-127.