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The nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular receptor 

capable of sensing bacteria-derived muramyl dipeptide. We investigated the role of NOD2 in the pathogenesis 

of Group B Streptococcus (GBS) capsular type III, a crucial agent of life-threatening invasive infections, by using 

an adult NOD2-/- mouse model of infection. We demonstrated that NOD2 is not a key receptor to fight GBS 

infection and only partially contributes to the inflammatory response. This Research Highlight discusses the 

findings of this recent study and the investigators’ active research on the involvement of receptors in the 

interaction between encapsulated bacteria and dendritic cells. 
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The innate immune system has developed an arsenal of 

mechanisms to detect and eliminate pathogens [1]. Innate 

immune responses rely on pattern recognition receptors 

(PRRs) for detection of pathogen-associated molecular 

patterns (PAMPs). These receptors include Toll-like 

receptors (TLRs), RIG-I-like receptors and NOD-like 

receptors  (NLRs) family of proteins [2]. NLRs recognize 

PAMPs in the cytosolic compartment and comprise more 

than 20 family members, including nucleotide-binding 

oligomerization domain-containing protein 1 or 2 (NOD1, 

NOD2) and NLR family pyrin domain-containing protein 

3 (NLRP3) receptors [2]. NOD1 and NOD2 recognize 

bacterial components derived from peptidoglycan (PGN) 

synthesis and/or degradation, resulting in the activation of 

transcription factor nuclear factor κB (NF-κB) and the 

mitogen-activated protein kinases (MAPKs) [3]. NOD2 is 

found especially in myeloid cells such as dendritic cells 

(DCs) and macrophages [4, 5] and senses muramyl dipeptide 

(MDP) [4], a PGN component of both Gram-positive and 

Gram-negative bacteria. Many in vitro or in vivo studies 

established that NOD2 is a relevant mediator of host 

defense against a wide range of pathogens, including 

intracellular bacteria like Listeria monocytogenes [6, 7], 

Mycobacterium tuberculosis [8-10], Neisseria gonorrhoeae 
[11], Helicobacter pylori [12] and Legionella pneumophila 
[13]. NOD2 has also been shown to regulate the immune 

response to extracellular bacteria, such as Streptococcus 

pneumoniae [14-16], Streptococcus pyogenes [17], 

Streptococcus suis [18, 19] and Staphylococcus aureus [20-25].  

Streptococcus agalactiae or Group B Streptococcus 

(GBS) is an important agent of severe invasive infections 

in pregnant women and newborns worldwide [26]. Clinical 

manifestations of GBS infection are principally related 

with pneumonia, septicemia, and meningitis. GBS is also 
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associated to invasive disease in nonpregnant adults, 

particularly among the elderly and individuals with 

underlying persistent illnesses [27]. Similarly to other 

bacterial pathogens, clinical isolates of GBS are coated 

with a capsular polysaccharide (CPS), known as the major 

factor for bacterial survival within the host. Among 

described GBS capsular types [26, 27], capsular type III is 

the principal type isolated from GBS meningitis [26]. 

Mancuso et al. [28] reported that GBS antigens can be found 

either in DC early and late phagosomes (containing intact 

bacteria) or in degradative vacuoles bearing lysosomal 

markers and containing partially digested GBS material 

co-localized with TLR7. Thus, it could be accepted that 

intracellular recognition of GBS is important in the 

immune response against this pathogen. Recently, Costa et 

al. [32] reported that activation of the inflammasome, an 

inflammatory signaling complex, by GBS is implicated in 

host defense against this pathogen. On the other hand, in 

vitro studies performed to date were unable to prove a clear 

role of NOD in GBS interactions with macrophages [29, 30].  

In our recent study entitled “The NOD2 receptor does 

not play a major role in the pathogenesis of Group B 

Streptococcus in mice” [31], we used a mouse model of 

infection to better understand and give a first indication of 

the importance of NOD2 during GBS infection. We 

focused on the implication of NOD2 in the innate immune 

response against GBS during acute infection. 

Independently of the bacterial dose, similar survival and 

bacteremia levels were observed in infected NOD2-/- mice 

compared to control mice. Interestingly, ex vivo analysis 

of total spleen cells or sera from infected animals 

demonstrated that the absence of NOD2 results in 

diminished production of inflammatory cytokines. 

Nevertheless, this reduced inflammatory response does not 

seem to favor mouse survival. This study demonstrated 

that NOD2 is not an important receptor to sense GBS 

during infection and only weakly contributes to the 

inflammatory response. Further studies are necessary to 

measure the effect of NOD2 in the development of 

adaptive immunity, and more especially on the generation 

of anti-GBS specific antibodies. In this regard, in our 

recent study we observed that the expression levels of the 

T and B cell activation marker CD69, known as one of the 

earliest available indicators of leukocyte activation,  

were unaltered in NOD2−/− cells during GBS type III 

infection [31]. Compared to the results reported in the study 

of Costa et al [32], we concluded that NOD2 is not as 

relevant as NLRP3, at least in adult mice. These findings 

represent an important step in understanding how GBS 

interacts with immune cells and confirm the hypothesis 

that GBS use complex TLR-dependent [33], NLRP3-

dependent [32], NOD2-dependent in addition to 

TLR/NOD2-independent pathways to modulate host 

immune responses. 

Our research group use GBS and S. suis as models for 

the study of encapsulated bacteria. S. suis is a major swine 

pathogen and an emerging zoonotic threat in humans able 

to induce septicemia with sudden death, meningitis, 

endocarditis, pneumonia, and arthritis [34, 35]. GBS and S. 

suis share the feature of being the sole Gram-positive 

bacteria expressing terminal sialic-acid in their CPSs.  

Our work mainly focuses on the characterization of the 

interactions between these pathogens and DCs, with a 

particular interest on the receptors involved in the 

recognition of GBS or S. suis by these cells. Recently, we 

showed that encapsulated GBS is efficiently internalized 

by mouse DCs, yet the presence of CPS confers to GBS 

and intracellular survival advantage. Likewise, GBS 

internalization by DCs is largely required for modulation 

of IL-10, IL-12p70 and CXCL10 pathways [36]. The CPS 

seems to be important for the recognition of GBS via lipid 

rafts [37]. Receptors implicated in encapsulated GBS 

recognition within DC lipid raft domains are unknown. 

Sialic acid-binding immunoglobin superfamily lectins 

(Siglecs) or integrin CD11b/CD18 may be some of 

potential receptors used by GBS within lipid 

microdomains [37]. Encapsulated GBS interaction with 

lipid rafts might also facilitate bacterial contact with 

caveolin-1, leading to modulation of caveolin-related 

signaling pathways and activation of specific immune 

mediators, for instance CCL2 [37]. We also observed that 

highly purified GBS CPSs induced significant production 

of CCL3 by DCs, via partially TLR2- and myeloid 

differentiation factor 88 (MyD88)-dependent pathways, 

and CCL2, via TLR-independent mechanisms [38]. A 

similar pattern was observed with highly purified S. suis 

CPSs.  In addition, DCs also recognize whole S. suis and 

become activated mostly through TLR signaling. 

Particularly, TLR2 is involved in the release of several 

cytokines and the expression of co-stimulatory molecules 

by S. suis-infected DCs [18]. Besides this major pathway, a 

multimodal recognition involving a combination of 

different receptors (NOD2 and TLR9 for example) seems 

essential for DC effective response to S. suis [18]. Like S. 

suis, production of cytokines by DCs in contact with GBS 

(at the extracellular interface) was shown to strongly rely 

on MyD88-dependent signaling pathways, suggesting that 

DCs recognize GBS and become activated mostly through 

TLR signaling (Lemire et al, unpublished results). Overall, 

these results demonstrate the implication of various 

receptors and the complexity of DC adaptive fitness in 

contact with GBS or S. suis.   

We are interested in the future to further dissect the 

impact of certain families of receptors in recognition of 

GBS or S. suis, but also in characterizing the importance 

of receptors in the interaction of DCs with other immune 



Receptors & Clinical Investigation 2014; 1: e55. doi: 10.14800/rci.55; © 2014 by Paul Lemire, et al. 

http://www.smartscitech.com/index.php/rci 
 

Page 3 of 4 
 

cells, including T cells and Natural Killer cells. 
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