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Obesity is a recently established risk factor for Alzheimer’s disease (AD) and dementia. The mechanisms 

linking obesity to AD have not been firmly established and therefore no evidence-based hypotheses exist for 

designing preventative or therapeutic interventions. Adiponectin is the most abundant adipokine in the 

circulation and its levels are substantially reduced in obesity. In peripheral tissues, adiponectin exerts a wide 

range of beneficial physiological actions, including anti-diabetic, anti-inflammatory, anti-atherosclerotic and 

cardioprotective effects. Several different lines of evidence indicate that adiponectin exerts effects on the brain, 

but data is still conflicting. Recently work from our laboratory confirmed the expression of adipoR1 and 

adipoR2 in primary human astrocytes isolated from adult brain samples and we found that globular 

adiponectin induced astrocyte inflammation. Due to the prominent role of brain inflammation in AD, astrocyte 

inflammation induced by globular adiponectin could be involved in AD-related pathology. In this brief review, 

we summarized the evidence connecting obesity and AD, with a specific focus on the potential involvement of 

adiponectin. We also suggest approaches for further exploring adiponectin's effects in AD pathogenesis. 

Elucidating the role of adiponectin in AD-related pathology will hold promise for identifying potential 

therapeutics that could promote positive effects of adiponectin for the prevention and/or treatment of AD and 

dementia in the context of obesity. 
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1. Introduction 

Alzheimer's disease (AD) is characterized by 

progressive cognitive decline, loss of memory, and 

dementia, and is the most common neurodegenerative 

disease in humans. The pathological hallmarks of the 

disease are neurofibrillary tangles (NFTs) comprised of 

hyperphosphorylated tau[1] and senile plaques comprised of 

amyloid beta (Aβ)[2], which result in neuronal death and 

dysfunction. A significant inflammatory component is also 

present in brains of individuals with AD, consisting of 

activated microglia and astrocytes and an increase in levels 

of brain cytokines[3-4].The disclosure of AD presents a great 

challenge because it not only affects patients’ quality of life 

but also has significant impact on family members and 

caregivers. At present, neither a satisfying therapy nor a 

preventative cure is available for AD. This is largely 

because our knowledge of the complex biology of AD is 

incomplete, highlighting the importance of exploring and 
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understanding new mechanisms underlying AD 

progression. 

2. Obesity and increased risk of AD 

The most significant risk factor for AD is aging but 

mounting evidence now suggest that obesity represents an 

independent risk factor for AD and related dementias[5-7]. 

Research linking obesity to AD can be summarized as 

follows: 1) Longitudinal studies report that overweight, 

obesity, and/or increased abdominal adiposity in mid-life 

result in ~1.5 to 3-fold greater risk of developing AD, 

dementia or cognitive impairment later in life[5-6, 8-10]; 2) 

Many consequences of obesity-including impaired glucose 

tolerance, type 2 diabetes (T2DM), and cardiovascular 

disease-are also risk factors for AD[11-15]. Increased risk of 

AD in obesity and T2DM is separate from vascular 

dementia and appears to persist after adjustment for 

cardiovascular risk factors such as stroke, hypertension, 

and cerebrovascular disease, suggesting an independent 

role for obesity-related metabolic dysfunction; 3) High-fat 

feeding, which is used to model obesity, results in impaired 

cognitive function in rodents[16-17] and humans[18], as well 

as increased astrogliosis[19-21], and microglial activation[17; 

19-21] in rodent brains; 4) A recent review using population 

attributable risk scores estimated that 7% of all AD cases 

in the USA can be attributed to midlife obesity[22]. Despite 

this mounting evidence supporting the association between 

obesity and increased risk of AD, the mechanistic links 

between obesity and AD brain pathology remain 

incompletely understood. 

3. Adiponectin: a potential mechanistic link between 

obesity and AD? 

3.1 Evidence gleaned from adiponectin action in 

peripheral tissues 

It is now well-accepted that adipose tissue is an active 

endocrine organ that secretes a host of hormone-like 

substances termed “adipokines”[23]. Adipose tissue 

contains adipocytes, preadipocytes, endothelial cells, and 

various immune cells and thus adipokines may originate 

from any one of these diverse cell types. Adiponectin, the 

most abundant adipokine in circulation, is thought to be 

secreted almost exclusively by adipocytes[24]. Several 

experimental and clinical studies have shown that 

adiponectin is inversely related with adiposity, resulting in 

lower circulating levels of adiponectin in obesity [25-26]. In 

peripheral tissues, adiponectin improves insulin 

sensitivity[27-28] and vascular function[29], and has anti-

atherogenic, anti-inflammatory actions[30] and 

cardioprotective effects[31]. Thus, reduced adiponectin in 

obesity could indirectly influence AD risk through 

modulation of several interrelated systemic factors. 

However, emerging, yet currently incomplete, evidence 

suggests that adiponectin may impact AD risk through 

direct effects in the brain.  

3.2 Potential beneficial effects of adiponectin in the 

central nervous system (CNS) 

Adiponectin receptors are widely distributed in the 

CNS[32-34]. Recent studies show that circulating adiponectin 

enters the brain fluid from the circulation, and the trimer 

and hexamer forms of adiponectin can be detected in the 

cerebrospinal fluid[35-38]. Lee et al.[39] reported that 

adiponectin knockout (KO) mice have enhanced kainic 

acid-induced seizure severity, but only when animals are 

rendered obese through high-fat feeding. This provided the 

first evidence suggesting that adiponectin could link 

obesity-related metabolic dysfunction to greater risk of 

neurodegeneration. Substantial associative evidence also 

supports a neuroprotective effect of adiponectin, including: 

1) Clinical and animal studies report that thiazolidinediones 

(TZDs) and omega-n-3 poly-unsaturated fatty acids 

(PUFAs) have benefits on cognitive impairment associated 

with dementia and AD[40-42]. An increase in plasma 

adiponectin is one of the most notable and common 

responses to TZDs treatment and n-3 PUFAs 

supplementation [41-42]. Thus, adiponectin might play a role 

in TZD’s and n-3 PUFAs’ beneficial effects on the brain. 2) 

Insulin resistance is another significant risk factor for AD[5, 

43]. Longitudinal studies show that insulin resistance is 

associated with increased risk of AD[44-45], increased 

amyloid Aβ plaques and NFTs[43] and hippocampal 

atrophy[46]. Adiponectin is a well-known insulin 

sensitizer[27-28]. By enhancing insulin sensitivity, 

adiponectin might reduce brain pathology and AD risk. 

Furthermore, at the cellular level, Chan et al.[33] reported 

that high concentrations of adiponectin (10 µg/ml) were 

protective against amyloid beta induced neurotoxicity in 

Sw-APP transfected SH-SY5Y cells exposed to oxidative 

stress conditions, further supporting adiponectin might be 

protective against AD. 

3.3 Potential detrimental effects ofadiponectin in the 

CNS 

In contrast to the above mentioned benefits of 

adiponectin on AD risk there is also evidence supporting a 

detrimental effect of adiponectin with regards to 

neurodegeneration. The Framingham Heart Study showed 

that individuals with higher levels of adiponectin had 

increased risk of future dementia[47]. Une et al. [48] have also 

reported elevated cerebrospinal fluid adiponectin in older 

adults with mild cognitive impairment compared to healthy 

age-matched individuals, suggesting that elevated CNS 

adiponectin tracks AD risk. A pathogenic role for 

adiponectin has also been described in ischemic stroke, 

where adiponectin receptor 1 (adipoR1) expression is 

increased and globular adiponectin (gAd) enhances 

neuronal cell death in response to glucose and oxygen 

deprivation[49]. Recently, work from our laboratory 
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confirmed the expression of adipoR1 and adipoR2 in 

primary human astrocytes isolated from adult brain 

samples and we found that gAd induced astrocyte 

inflammation[34]. Based on pharmacological inhibitor 

experiments, the induction of inflammatory cytokine 

production in astrocytes appeared mediated by several 

classical inflammatory pathways, including nuclear factor 

kappa B (NFκB), p38 mitogen-activated protein kinase 

(MAPK), c-Jun N-terminal kinase (JNK), 

phosphatidylinositide 3-kinase (PI3K), and particularly 

extracellular signal-related kinase (ERK) 1/2[34]. Thus, 

augmented brain inflammation may be a potential cellular 

mechanism linking adiponectin with the previously 

described neurodegenerative consequences[34]. Further 

studies are warranted to examine the impact of adiponectin 

on brain function in neurodegenerative disorders including 

AD. One physiological complication in studies of 

adiponectin and dementia is the association with energy 

balance. Adiponectin tends to increase in conditions of 

negative energy balance (i.e., weight loss) yet weight loss 

has been shown to be a significant predictor of impending 

dementia[50-51]. Therefore, in studies showing an 

association between increased adiponectin and cognitive 

impairment[47,48] it is possible that negative energy balance 

was a confounding factor. 

3.4 Potential approaches to further explore the action of 

adiponectin in the pathogenesis of AD 

1) Adiponectin knockout (KO) mice 

Multiple strains of adiponectin KO mice have been 

created in different laboratories[52-55]. Although phenotypes 

are somewhat variable, generally adiponectin KO mice (6-

16 wks of age) show only subtle changes in metabolic 

phenotype when fed a chow diet, e.g. slight insulin 

resistance compared to WT mice[52, 55] or normal insulin 

sensitivity[53], and no difference in body weight and food 

intake[54]. In response to HFD (≥2 wks), adiponectin KO 

mice display markedly greater fat mass, insulin resistance, 

glucose intolerance, and chronic inflammatory markers 

compared to WT littermates[52, 54-55]. A recent study 

reported that adiponectin KO mice developed marked 

fibrosingsteatohepatitis 40 wks after HFD[56]. It would be 

interesting to explore whether adiponectin KO mice will 

develop more AD related pathology under chow and HFD 

conditions compared to age matched WT control.  

2) Commercially available adiponectin peptides for in 

vitro or infusion studies 

Adiponectin exists in different conformations including 

trimer, hexamer and high-molecular weight forms[57] as 

well as a globular isoform, which is produced after 

proteolytic cleavage of full-length adiponectin monomers 

by neutrophil elastase[58]. Different isoforms of adiponectin 

have been shown to play distinct biological roles in 

peripheral tissues[59-60]. Our recently published data suggest 

that globular adiponectin (1μg/ml) induces a pro-

inflammatory state in human astrocytic U373 MG cell 

line[34], which is in consistent with the findings about 

globular adiponectin in peripheral tissues[61-62]. This data 

suggesting a link between globular adiponectin and AD-

related brain pathology (i.e., inflammation) is consistent 

with studies reporting that globular adiponectin enhances 

neuronal death under hypoxic conditions[49]. The roles 

played by other forms of adiponectin in neuroinflammation 

and neurodegeneration require further exploration. Future 

cellular research is also needed to study potential 

interactions between the different forms of adiponectin and 

other established signaling molecules in AD-related 

pathology. 

3) Adipose tissue conditioned media (ATCM): a model 

of adipose-brain crosstalk? 

Adiponectin is one of the most abundant proteins in 

serum, circulating in the μg/ml range. The physiological 

levels of adiponectin in human cerebrospinal fluid are 

reported to be ~1000-fold less than in serum[63]. It is of 

importance to explore how adiponectin, at physiological 

levels, exert its action in the CNS, as well as determining 

the function of adiponectin in combination with other 

adipokines. In this regard, human adipose tissue 

conditioned media provides a unique way to explore 

potential adipose-brain crosstalk. Adipose tissue organ 

culture (ATOC) is a well-recognized technique to study 

adipose tissue function that maintains the complex 

interplay of cells that is representative of normal 

physiology [64]. ATOC is a relatively easy technique and 

cultures can be prepared from surgical or biopsy samples[64] 

from different adipose tissue depots. ATCM can be stored 

at -80C and further utilized for transferring to different cell 

lines (such as neuronal or glial cell cultures). This 

technique allows the paracrine and/or autocrine interactions 

between adipocytes and other cell types in adipose tissue to 

remain intact and is arguably more representative of what 

is seen in vivo compared to isolated adipocyte preparations. 

Thus, altered adipokine secretion from subjects with 

different metabolic status (such as lean vs. obese, and non-

T2DM vs. T2DM) can be prepared and ATCM can be used 

to treat brain cell cultures to study how physiological 

combinations of adipokines impact mechanisms of 

neurodegeneration. Because adipose tissue remains 

buoyant and floats during ATOC procedures, direct co-

culture of adipose with adherent brain cell lines can also be 

performed with, or without, the use of tissue culture inserts. 

These techniques will be potentially useful for exploring 

whether altered adipose tissue secreted factors (especially 

decreased adiponectin secretion) owing to different 

metabolic status are involved in the pathogenesis of AD. 

Because depot-specific differences in adipose tissue remain 

during the culture procedure [65], this approach will be 
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potentially helpful for determining whether fat from 

different depots might have different roles in AD pathology. 

4. Final remarks 

Given the alarming rates of obesity worldwide, 

understanding the mechanisms underlying the increased 

risk of AD in obesity is essential to develop evidence-based 

therapies for mitigating AD risk. Adiponectin may act 

locally or systemically, influencing numoerous biological 

processes including energy metabolism, insulin sensitivity, 

vascular function, neuroendocrine function and immune 

responses. Several different lines of evidence, from 

longitudinal cohort studies in humans[47] to mechanistic 

studies in cell culture[33-34] indicate that adiponectin exerts 

effects on the brain, but data is still conflicting and further 

studies are needed to clarify the precise actions of 

adiponectin in the CNS. Elucidating the role of adiponectin 

in AD-related pathology will hold promise for identifying 

potential therapeutics (e.g. pharmacological induction of 

adiponectin, targeted lifestyle strategies) that could 

promote positive effects of adiponectin for the prevention 

and/or treatment of AD and dementia in the context of 

obesity. 
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