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Latency is a hallmark of all herpesviruses, during which the viral genomes are silenced through DNA 
methylation and suppressive histone modifications. When latent herpesviruses reactivate to undergo productive 
lytic replication, the suppressive epigenetic marks are replaced with active ones to allow for transcription of 
viral genes. Interestingly, by using Kaposi’s sarcoma-associated herpesvirus (KSHV) as a model, we recently 
demonstrated that the newly transcribed viral RNAs are also subjected to post-transcriptional N6-adenosine 
methylation (m6A). Blockade of this post-transcriptional event abolishes viral protein expression and halts virion 
production. We found that m6A modification controls RNA splicing, stability, and protein translation to regulate 
viral lytic gene expression and replication. Thus, our finding for the first time reveals a critical role of this 
epitranscriptomic mechanism in the control of herpesviral replication, which shall shed lights on development of 
novel strategies for the control of herpesviral infection. 
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Kaposi’s sarcoma-associated herpesvirus (KSHV) is an 
oncogenic virus associated with multiple malignancies 
including Kaposi’s sarcoma (KS), primary effusion 
lymphoma (PEL), and multicentric Castleman’s disease 
(MCD) [1-3]. Like all herpesviruses, KSHV enters a latent
phase shortly after primary infection. Under immune
suppressive conditions, the latent virus reactivates to undergo
lytic replication to produce new viruses. Productive lytic
replication not only causes de novo infection but also plays
an essential role in the development of KS and MCD [4, 5].
Previous studies demonstrate that the switch from latency to
lytic replication is primarily controlled at the viral chromatin

level through epigenetic mechanisms [6, 7]. Indeed, the 
majority of KSHV genome is silenced during latency through 
DNA methylation, repressive histone modifications, and 
other negative gene expression regulatory mechanisms [7-11]. 
When the latent virus reactivates, prompt epigenetic changes 
occur, leading to transactivation of the viral genome. 
However, our recent study discovered that KSHV 
reactivation stalls if the newly transcribed viral RNAs fail to 
undergo post-transcriptional N6-adenosine methylation 
(m6A) [12]. Our finding highlights a pivotal role of this 
epitranscriptomic mechanism in the control of KSHV lytic 
replication.  
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RNA N6-adenosine methylation (m6A) is one of the most 
abundant types of RNA modifications found in over 25% of 
RNA species in mammalian cells [13-15]. A complex of three 
methyltransferases: methyltransferase like 3 (METTL3), 
methyltransferase like 14 (METTL14), and Wilms tumor 1 
associated protein (WTAP) acts as m6A writers and catalyze 
RNA m6A at specific sites with the consensus sequence 
(G/AGAC) [16-18]. Two demethylases, fat mass and obesity 
associated protein (FTO), and AlkB Homolog 5 (ALKBH5), 
act as m6A erasers and reverse this process [19-21]. Most m6A 
sites are located near the transcription start sites, exonic 
regions flanking splicing sites, stop codons, and the 
3’untranslated region (3’UTR) [14, 22-24]. The biological 
functions of m6A are mediated by m6A readers. In the 
nucleus, for example, heterogeneous nuclear 
ribonucleoproteins hn-RNP-C and hn-RNP-A2/B1 
selectively bind RNA at m6A sites to regulate pre-mRNA 
processing and alternative splicing [22, 24-27]. In addition, the 
YTH domain containing 1 protein (YTHDC1) binds 
pre-mRNA at m6A sites and preferentially recruits the 

serine/arginine-rich splicing factor 3 (SRSF3) over SRSF10 
for exon inclusion splicing [28-31]. In the cytoplasm, three 
members of the YTH domain-containing family proteins, 
YTHDF1, YTHDF2, and YTHDF3, preferentially bind 
m6A-containing mRNAs to regulate RNA stability, protein 
translation, and RNA decay [32-35]. In addition, the eIF3, a 
component of 43S translation pre-initiation complex [36], 
directly binds m6A sites in the 5’untranslated region (5’UTR) 
of mRNAs to enhance protein translation [37]. Therefore, m6A 
represents a very important cellular mechanism for the 
control of gene expression at the post-transcriptional level. 
Interestingly, massive increases in m6A modification occur in 
the RNAs of human immunodeficiency virus-1 (HIV-1) [38,

39]. Blockade of m6A effectively abolishes HIV-1 protein 
expression and virion production, suggesting that this 
epitranscriptomic mechanism also controls viral gene 
expression. 

Similar to HIV-1, most KSHV transcripts undergo m6A 
modification, and the level of m6A-modified mRNA of a 

Figure 1. Post-transcriptional m6A modification controls KSHV RTA (ORF50) pre-mRNA splicing. Multiple m6A sites 
are found in RTA pre-mRNA, which are methylated by m6A writers METTL3, METTL14, and WTAP. The m6A sites in the 
intron near the two splicing sites are critical for YTHDC1 binding and recruitment of splicing factors SRSF3 and SRSF10 
while the m6A site in Exon2 near the splicing site is important for recruitment of SRSF3 and dissociation of SRSF10. 
Interactions between the m6A-modified RTA pre-mRNA and the different splicing factors ensure exclusion splicing of the 
intron to generate RTA mRNA. The other m6A sites may enhance RTA mRNA export, stability, and translation through 
interaction with m6A readers YTHDF1, YTHDF2, and YTHDF3. The expressed RTA protein enhances the host’s m6A 
machinery to increase the levels of m6A to promote its own pre-mRNA splicing and KSHV lytic gene expression. In contrast, 
KSHV latent protein LANA has the opposite effects on m6A and RTA pre-mRNA splicing.  
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given viral transcript increases in parallel with that of total 
mRNA when latently infected cells are induced by phorbol 
ester (TPA) or other lytic replication stimuli. Expressional 
knocking down of the m6A writer METTL3 substantially 
reduces TPA induction of KSHV lytic genes, and blockade 
of m6A reaction literally abolishes expression of all lytic 
genes examined and halts virion production. In contrast, 
expressional knocking down or activity inhibition of the m6A 
eraser FTO has the opposite effects.   

To understand how RNA methylation controls KSHV 
replication, we examined the effect of m6A on expression of 
viral regulator of transcription activation (RTA), which, 
encoded by open reading frame 50 (ORF50), is a key 
mediator of the switch from latency to lytic gene expression 
[40]. Due to differential splicing, the ORF50 (RTA) and 
ORFK8 loci produce at least three different groups of 
transcripts, including ORF50 /ORFK8/ORFK8.1 tricistronic 
mRNAs, ORFK8/ORFK8.1 bicistronic mRNAs, and 
monocistronic ORFK8.1 mRNAs [41]. RTA, which is 
expressed from the tricistronic mRNAs, consists of two 
exons and one intron (Fig. 1). Interestingly, blockade of m6A 
substantially reduces the level of TPA-induced RTA mRNA 
but has much less an effect on the level of RTA pre-mRNA, 
suggesting that m6A controls RTA pre-mRNA splicing. 
Indeed, multiple m6A sites are identified in RTA pre-mRNA. 
Data from genetic mutation assays demonstrate that the m6A 
sites in the intron near the two splicing sites are critical for 
RTA expression, and one m6A site in Exon2 near the splicing 
site also plays an important role in RTA pre-mRNA splicing. 
Data from RNA immuno-precipitation (RIP) assays confirm 
that these sites are indeed m6A modified. In addition, both 
SRSF3 and SRSF10 are present at the m6A sites in the intron 
near the two splicing sites, and the levels of m6A and these 
splicing factors increase significantly upon TPA treatment. 
Mutation of these m6A sites abolishes the RNA-protein 
interactions and RTA protein expression, thus suggesting that 
m6A modification of these sites is critical for recruitment of 
SRSF3 and SRSF10 and exclusion of the intron.  In 
contrast, the m6A site in Exon2 near the splicing site is 
critical for removal of SRSF10 and Exon2 inclusion splicing. 
Therefore, our data highlight a pivotal role of m6A 
modification in RTA pre-mRNA splicing. Interestingly, 
when the m6A sites in both the intron and Exon2 are 
simultaneously mutated, the level of RTA pre-mRNA drops 
dramatically (un-published results), suggesting that m6A 
modification also contributes to stability of RTA pre-mRNA. 
In addition, similar to host mRNAs and HIV-1 transcripts, 
m6A modification may also promote RTA mRNA stability 
and protein translation through association with m6A readers 
YTHDF1, YTHDF2, and YTHDF3. 

Finally, we also found that expression of RTA protein 

increases the levels of m6A modification and promotes its 
own pre-mRNA splicing. RTA is known to enhance its own 
transcription [42]. Thus, our data for the first time demonstrate 
that RTA increases its own expression through both 
transcriptional and post-transcriptional mechanisms. Very 
interestingly, the KSHV latent protein LANA, which inhibits 
RTA expression to promote latency [43], suppresses TPA 
induction of RNA m6A modification and inhibits RTA 
pre-mRNA splicing (un-published results).  

In summary, our results not only demonstrate an essential 
role of m6A in regulating RTA pre-mRNA splicing but also 
suggest that KSHV has evolved two opposite mechanisms to 
manipulate the host m6A machinery to its advantage in 
promoting lytic replication and latency respectively. This 
epitranscriptomic mechanism may be used by other 
herpesviruses as well. Our findings shall shed light on 
development of new strategies for the control of herpesviral 
infection. 
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