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Alzheimer’s Disease (AD) is described as a gradual decrease in cognition and memory frequently causing 

dementia in most cases. Human microbiome (HM) contribute to the regulation of multiple neuro-chemical and 

neuro-metabolic pathways. The pathological features of AD include amyloid beta peptide (Aβ) deposition, 

neuronal tangle formation and granulovacuolar degeneration. Aβ protein is a normal part of the innate immune 

system, the body's first-line defense against infection. However recent report shows that Aβ expression protects 

against fungal and bacterial infections in mouse, nematode, and cell culture models of AD. Recent reports suggest 

that these proteins are also expressed on bacterial and fungal cell surfaces and might contribute to immune 

response. In addition to commensal microbes, there are other pathogens like Chlamydophila pneumoniae, 

Toxoplasma gondii, Viroids, Hepatitis, Cytomegalovirus have been suspected to be involved in AD. Microbes are 

proposed to play an important role in the pathophysiology of neurodegenerative disease. Microbes are shown to 

produce relevant neurotransmitter, modulate immune response and translocate through blood or lymphatic 

system to brain from the site of infection. Here we elaborated on the emerging ideas showing the contribution of 

the gut microbiome to human neurological diseases with special emphasis on AD. The evidences described here 

may be helpful in designing further studies for taxonomic and functional profiling of microbiota in patients with 

AD which may open doors for advanced therapeutic inventions. 
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Introduction 

Alzheimer’s disease (AD) is characterized by a slowly 

progressive decline of cognition and memory and is the most 

frequent cause of dementia. The major factors for AD are 

unknown, however age is considered as a significant risk 

factor. About 5% of AD cases have a genetic or familial cause 

although the vast majority of all AD cases (~95%) are of 

sporadic origin [1-4]. Disrupted innate immune response, neuro-

immune markers or inflammatory signaling processes are 

crucial in the degenerative process of AD [5-7]. There is 

currently no cure or adequate treatment for AD, and it remains 

unclear how it originates and propagates throughout the brain 
[1]. The pathological features in AD include amyloid beta  
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Figure 1. An overview describing the contents of the review. 

peptide (Aβ) deposition, neuronal tangle formation and 

granulovacuolar degeneration and senile plaques [8]. Mutation 

in epsilon 4 allele of apolipoprotein E (ApoE4)  are 

considered as risk factors [9]. Presenilin 1 and Presenilin 2 

genes are implicated in early onset AD [10]. Polymorphisms in 

various inflammatory genes are also implicated as risk factors 
[11]. The intercellular spreading required for AD ‘staging’ and 

propagation is carried out by small molecular pathogenic 

factors and blood borne neurotoxic elements from the 

environment [12-14]. Aβ protein is a normal part of the innate 

immune system, the body's first-line defense against 

infection. Recent report also shows that Aβ expression 

protects against fungal and bacterial infections in mouse, 

nematode, and cell culture models of AD [14]. Evidences 

suggesting the involvement of innate immune system in the 

onset of AD supports a role for microbes that initiate innate 

immune responses [15, 16]. 

Human Microbiome 

Accumulating evidence has drawn our increased awareness 

towards the relevance of human microbiome and the healthy 

and homeostatic human physiology. Various areas of  the 

human body, including conjunctiva, respiratory tract, oral, and 

otic cavities, and majorly the gastrointestinal tracts (GIT) 

serves as ecosystems for microbial communities comprising 

the human microbiota [1]. The human gut harbors a dynamic 

and complex microbiome consisting of nearly 1014 micro-

organisms spanning over 1000 distinct microbial species 

which outnumber human somatic cells[17-19]. 

GIT is dominated by anaerobic Firmicutes (~51%) and 

Bacteroidetes (~48%). The remaining 1% consist of the 

Proteobacteria, Verrucomicrobia, Fusobacteria, Cyanobact-
eria, Actinobacteria, and Spirochetes other than few species 

of fungi, protozoa and viruses [20]. The microorganisms 

comprising the 1% of the microbiome are also considered 

relevant, as in the case of dysbiosis [17,21,22]. The relationship 

established between the intestinal microbiota and its human 

host provides mutual benefits. During homeostasis, the 

microbiota benefits from the nutrient-rich, warm, environment 

of the gut. In exchange, humans benefit from a highly adaptive 

metabolic engine [18]. The host and microbial communities 

consist mainly of a defined “core microbiome”, despite having 

inter-individual differences at the phylotype level[23]. This 

core microbiome maintains a delicate balance that confers 

health benefits[24]. 

Varying combinations and strains of bacterial species 

amongst human populations might contribute to “human-
biochemical” or “genetic-individuality” and resistance to 

disease[25]. Interestingly, HM participation in human 

physiology may explain the genome-complexity [19, 26, 27] 

(Figure 1). 

HM in neurological disease  

Role of HM in neurological disease is highlighted by studies 

on germ free mice, displaying abnormal behavior and brain 

chemistry. Some of the common gastrointestinal conditions, 

such as irritable bowel syndrome, involving dysbiosis of the 

intestinal microbiota, frequently coexist with psychiatric 

disorders [28].  

Neufeld et al. showed that in the absence of a conventional 

microbiota, female germ free mice show reduced anxiety 

behavior. They also reported simultaneous upregulated  

expression of brain derived neurotrophic factor (BDNF) 
mRNA in the dentate gyrus of the hippocampus [29]. BDNF is 

essential in the maintenance and survival of neurons is known 

to affect neuronal development, differentiation, synapto-

genesis, and the synaptic plasticity that are important for 

neuronal circuit formation and cognition. BDNF was found to  
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Figure 2. Implication of gut microbiota in nervous system and tis communicative factors. 

 

be reduced in the hippocampus and cortex of “germ free” mice, 

and this was associated with increased anxiety behavior and 

progressive cognitive dysfunction [26, 30]. BDNF also has been 

found to be decreased in brain and serum from patients with 

anxiety, behavioral defects, schizophrenia, and AD [31,32]. 

Mice deficient in BDNF showed altered development of GIT 

innervations including the vagus nerve [33,34]. 

In experimental infection models known to lead to 

significant alterations in the microbiota profiles, also show 

reduced BDNF expression in the hippocampus and cortex of 

germ free “gnotobiotic” mice, and this was specifically 

associated with increased anxiety and progressive cognitive 

dysfunction [26, 32]. 

Relevance of HM in pathophysiology of AD  

The host is exposed to the pathogenic microbes and 

symbiotic gut microbiota during their lifetime. Symbiotic gut 

microbiota composition is able to modulate the immune 

system, because metabolic dysfunction in aging facilitates 

obesity. Microbiota and host exposure to pathogens and 

commensals may play crucial role in progression of 

degenerative disorders. The implication of gut microbiome in 

AD is shown in Figure 2. 

Modulation of neurotransmitters by bacteria 

  Members belonging to Gram-positive facultative anaerobic 

or microaerophilic Lactobacillus, and anaerobic 

Bifidobacterium species possess a unique capability of 

metabolizing glutamate to produce gamma aminobutyric acid 

(GABA). GABA is the major inhibitory neurotransmitter in 

the CNS and its signaling dysfunctions are linked to anxiety, 

depression, and cognitive impairment including AD [21,31,35-37]. 

Increased level of GIT γ-aminobutyric acid appears to 

correlate with increased GABA levels in CNS, but the 

systemic pathways that contribute to this linkage between gut 

and brain require additional study [38,39]. Glutamate is the most 

abundant excitatory neurotransmitter in the human CNS and 

is recognized by the N-methyl-D-aspartate (NMDA) receptor 

that regulates synaptic plasticity and cognition. These data 

suggest the possibility of an interaction between 

neurotransmitters and HM.  

Neurotoxin generated by resident microbes or 

environmental pathogens  

 Emerging studies indicate that the HM has highly 

interactive and symbiotic host microbiome signaling systems 

which allow HM to contribute to the regulation of multiple 

neuro-chemical and neuro-metabolic pathways [19].  

Neurotoxins, BMAA is a neurotoxic amino acid normally 

incorporated into the polypeptide chains that constitute brain 

proteins. Elevated levels of BMAA have been reported in the 

brains of patients with amyotrophic lateral sclerosis [40], the 

Parkinson dementia complex of Guam, and AD [41].  

Neurotoxins like saxitoxin and anatoxin, generated by 

Cynobacteria, may further contribute to neurological disease, 

especially when the intestinal epithelial barrier of the GIT 
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becomes significantly more permeable due to aging process 
[41,42]. Ability of bacteria to produce and recognize 

neurochemicals that are exactly analogous in structure to those 

produced by the host nervous system allow them to affect the 

neuro-signaling.  

Bacterial Amyloids 

Amyloid is considered as a major secretory product of 

microbes contributing to the pathophysiology of the human 

central nervous system (CNS). However, recent research has 

shown that these proteins are also expressed on bacterial and 

fungal cell surfaces and might contribute to immune response.  

Aβ42 peptides have the property to initiate a pattern of 

expression of inflammatory genes similar to classical immune 

and inflammatory response induced by infectious agents such 

as bacterial lipopolysaccharide (LPS) [43,44]. The diseases 

having accumulated amyloid as pathological feature, also 

involve a marked inflammatory response at sites of amyloid 

deposition, mediated by microglial cells. Microglial cells 

recognize abnormal forms of amyloid and initiate a phagocytic 

or “clearance” response through Toll like receptor 2 (TLR2) 
[45-47].  

The factors released by gut [45, 48] may potentially modulate 

or alter amyloidosis, neurochemistry, and neurotransmission 

in CNS. The contribution of the gut microorganism and 

bacterial amyloid to protein misfolding and amyloidogenic 

diseases such as AD has been hypothesized and bacterial 

components such as endotoxins are often detected within the 

senile plaque lesions that characterize the AD brain. 

Interestingly, the extracellular 17.7kDa amyloid precursor 

contains a pathogen associated molecular pattern (PAMP) that, 

like the Aβ42 peptide (one of the dominant Aβ peptide 

monomer), is recognized by the human immune system 

TLR2[45,48,49].  

Altered autoimmune response 

  The HM regulates autoimmune responses that can impact 

homeostatic metabolic and neural signaling functions within 

the CNS while constraining the host immunity to foreign 

microbes, including viral infection and xenobiotics [21,50]. 

Neurological disorders have been significantly associated with 

altered autoimmune responses. An increased incidence of auto 

immunity, exposure to pathogens both prenatal and postnatal, 

are common in disorders as diverse as anxiety, autism, 

depression, obsessive compulsive disorder, schizophrenia, PD, 

and AD. This suggests that differences in exposure and genetic 

vulnerability toward HM mediated auto immunity may be 

significant determinants in the course of age related 

neurological disease [21,50-54]. 

MicroRNA (miRNAs) modulation is also considered as a 

mechanism through which gut microbiota show its impact on 

the regulation of host physiology. CSF and extracellular fluid 

of AD patients contains miRNAs as the most abundant nucleic 

acids. The significant increase of miRNA-9, miRNA-125b, 

miRNA-146a, and miRNA-155 have been detected in AD 

CSF compared to age matched controls. Primary human 

neuronal-glial (HNG) cell co-cultures stressed with AD 

derived ECF also displayed an up-regulation of these 

miRNAs[55]. 

Interestingly, both peripherally applied Aβ42 peptides and 

NF-кB regulated pro-inflammatory miRNAs are able to 

induce AD-type changes within brain cells in culture, 

including the dysregulation of innate immune and pro 

inflammatory signaling [56-58]. Studies have also reported the 

involvement of miRNAs in response to bacterial pathogens 

and viral infection, namely in mammalian cells [59]. These 

micro RNAs, including miR-146, miR-155, miR-125, are 

commonly modulated by bacterial infection and contribute to 

immune responses protecting the organism against 

overwhelmed inflammation. This suggests a mechanism 

through which commensal bacteria could impact the 

regulation of the barrier function and intestinal homeostasis. 

Potential neurotropic microorganism in AD 

The potential pathogenic microbes contributing to aging 

and subsequently to AD have been recognized [8,60,22,61-63]. 

Some bacteria are neurotropic by nature and are able to 

influence the nerves tissue by the production of bacterial 

amyloid, lipoproteins and other microbial triggers that can 

activate the microglial TLR2s, subsequently inducing 

cytokine production, inflammation, phagocytosis and innate 

immune defense responses that impact CNS homoeostasis and 

drive neuropathology. It has been observed that the 

TLR2/TLR1 complex can recognize biofilm associated 

amyloids produced by Firmicutes, Bacteroidetes, and 

Proteobacteria [48].  

THE GUT-BRAIN AXIS 

The enteric microbiota interacts with the host to form 

essential relationships that govern homeostasis in a healthy 

individual whereas dysbiosis make important contribution in 

disease pathology [24]. 

This has been established by identifying complex series of 

highly interactive and symbiotic host microbiome signaling 

systems that mechanistically interconnect the GIT, skin, liver, 

and other organs with CNS [18,64]. The bidirectional signaling 

between GIT and brain is vital for maintaining homeostasis 

and is regulated at the neural (both central and enteric nervous 

systems), immunological and hormonal levels. Perturbation of 

these systems results in alterations in the stress-response and 

overall behavior[65].  

Neuronal signaling pathways has structural, metabolic, 

protective functions thus contributing to a number of extra-

intestinal immune-mediated diseases. However they 

remain incompletely understood [18,64]. Neural connections 

involve the central and autonomic nervous systems. The 

brain can upset the gut and vice versa. The central nervous 

system (CNS) communicates with the intestine through 

gut-brain axis, comprising of the hypothalamic-pituitary- 
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Figure 3. Communication between gut, gut microbiota and brain. Possible outcomes of their effect on each other 
influencing overall homeostasis. 

  

 
adrenal axis and, in a gut context, the enteric nervous system 

(ENS). The autonomic nervous system (ANS) consists of 

three components: the sympathetic (noradrenergic) and 

parasympathetic (cholinergic) systems, which originate in the 

CNS (with cell bodies in the brainstem and spinal cord), and 

the enteric system [66] (Figure 3).   

The humoral components of the gut-brain axis consist of the 

hypothalamic-pituitary-adrenal axis, the entero-endocrine 

system and the mucosal immune system. The hypothalamic-

pituitary-adrenal axis is responsible for stress responses, 

resulting in the release of corticosterone, adrenaline and 

noradrenaline. The specialized endocrine cells located in the 

epithelial lining of the gut produce hormones such as 

cholecystokinin and ghrelin, involved in regulating appetite 

and 5-hydroxytryptamine having multiple effects on gut and 

brain functions [67]. 

Studies comparing germ-free and conventional rats showed 

that the microbiota influences the number of gut endocrine 

cells and the release of biologically active peptides [68] 

providing a further mechanism by which the microbiota might 

influence behavior. The intestinal microbiota imprints and 
instructs the mucosal immune system throughout the life of 

the host [69]. The intestinal microbiota is able to influence 

immune activation at sites beyond the GIT and may affect host 

susceptibility to immune-mediated conditions [70]. The 

integrity of the adaptive immune system, and of T lymphocyte 

responses in particular, are crucial for normal learning and 

memory in the mouse[71]. A range of psychiatric disorders, 

including depression implicates the role of pro-inflammatory 

cytokines, including interleukin-4 (IL-4) and interferon-γ [35]. 

Studies have shown that manipulation of the gut microbial 

composition influences systemic cytokine levels in animals 
[72,73] and humans [74]. Administration of B. longum subsp. 

infantis str. 35624 improves depression-like behavior and 

induces increased secretion of IL-6 by peripheral blood cells 

in mice that are subjected to maternal separation [73]. Thus, it 

is possible, that alterations in the intestinal microbiota may 

influence behavior indirectly by affecting cytokine levels in 

the circulation and the brain.   

Perturbed microbiota induced changes in brain chemistry 

and behavior, independent of vagus nerve demonstrates the 

role of microbe originated metabolite[75,76]. A recent study in 

mice showed that the microbiota exerts potential effect on the 

metabolomic profile of the host. The microbiota serves as a 

major source of both circulating organic acids and tryptophan 

metabolites[75,77]. GABA, which has been implicated in 

anxiety, has shown to be produced by commensal lactobacilli 
and bifidobacteria in human indicating that gut bacteria might 

influence behavior via the production of neurotransmitters [39]. 

Some gut bacteria are also able to produce other 

neurochemicals including noradrenaline, 5-hydroxytrypta-

mine receptors (5-HT), dopamine and acetylcholine. The use 
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of these bacteria has been suggested for treatment of 

neuropsychiatric diseases [78]. Moreover, germ-free mice, 

when colonized with bacteria show a >2-fold increase in 5-HT 

and its metabolites owing to bacterial metabolism of 

tryptophan which in turn influence the brain and behavior [77]. 

Alterations in the microbial composition of the gut might 

result in changes in serum kynurenic acid (tryptophan 

metabolite) levels which acts as an antagonist at excitatory 

amino acid receptors, could thus modify central nervous 

system (CNS) excitation and behavior which has been 

implicated in major psychiatric illnesses, including 

schizophrenia [79]. 

Behavior in animals has been reported to be influenced by 

bacterial fermentation products, including lactic acid and 

propionic acid. In a study diet rich in fermentable 

carbohydrates fed to rat, revealed a strong correlation between 

d-lactic acid levels in the caecum and displaying anxiety-like 

behavior and impaired memory [80]. High fecal concentrations 

of propionic acid show correlation with anxiety in patients 

with IBS[81]. Interestingly carbohydrate malabsorption, has 

been associated with depression in females, which may result 

from increased substrate availability for bacterial fermentation 
[82]. Influence of the microbiota on the brain is, further 

evidenced by the observation that behavioral traits of donor 

mice can be adoptively transferred into adult germ-free mice 

of a different strain via the intestinal microbiota. Combining 

these observations, the metabolic products of the intestinal 

microbiota influence brain function and behavior in the host. 

Conclusions 

  This review has presented a detail overview of our current 

understanding on the potential relevance of HM in 

pathophysiology of AD. To have an insights into the gut-brain 

crosstalk during infection, correlation of metabolic and 

neurological phenotypes with the HM profiles have been 

discussed. Further exploring the complex host microbiome 

relationships in healthy human brain vs. aging and during 

neuropsychiatric disease is necessary. Advanced technology 

such as high throughput sequencing and metagenomic 

technologies may further strengthen the suggested association 

with complex microbial ecosystems and may give rise to 

strategies to manipulate HM.  
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