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Hydroxyl radicals (•OH) exhibit the strongest oxidation potential of any reactive oxygen species (ROS) and react 
non-specifically with cellular components, such as nucleic acids, lipids and proteins. While mitochondrial •OH 
incites oxidative damage resulting in mitochondrial dysfunction, the actions of cytoplasmic •OH remain 
unknown as no cytoplasmic •OH-specific scavenger has been identified to date. To solve this problem, we 
developed the cytoplasm- and mitochondrion-specific •OH-targeted scavengers TA293 and mitoTA293, 
respectively. As expected, TA293 and mitoTA293 scavenged •OH, but not O2

– or H2O2. Notably, TA293 
scavenged pyocyanin-induced cytoplasmic •OH, but not mitochondrial radicals induced by antimycin A. 
Conversely, mitoTA293 scavenged •OH only in the mitochondria in vivo and in vitro. Interestingly, we found that 
cytoplasmic •OH plays a central role in cytoplasm ROS-induced oxidative stress, which potentiates cellular 
senescence, inflammation, and apoptosis in the kidney and lung. Based on these findings, we believe that TA293 
could be a novel tool to study the effects of •OH damage within the cytoplasm. 
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Introduction 

Excess reactive oxygen species (ROS) or free radicals 
oxidize cellular components, resulting in oxidative stress [1,

2]. These molecules react non-specifically with nucleic acids, 
lipids, and proteins, and are critical mediators of age-related 
diseases such as cancer, type II diabetes, neurodegenerative 
disease, cardiovascular disease, macular degeneration, and 
osteoarthritis [3-8]. NADPH oxidase and xanthine oxidase in 

the mitochondrial electron transport chain generate most of 
the superoxide anion radicals (O2

–), which are subsequently 
converted to H2O2 by either glutathione peroxidase or 
catalase [9]. Excess H2O2 then results in the production of 
hydroxyl radicals (•OH) via metal ion catalysis, as in the 
Fenton reaction [10]. In low concentrations, O2

– and H2O2 act 
as signaling effectors to play important physiological roles in 
apoptosis, cell proliferation, and differentiation, amongst 
others [11]. However, unlike that of O2

– and H2O2, •OH 
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scavenging is a critical antioxidant process, as there is no 
known detoxification system for these radicals [12]. 

Recent reports have identified important roles for •OH in 
the pathophysiology of several diseases [13-15]. Mitochondrial 
•OH are predicted to oxidize organelle constituents and cause
mitochondrial dysfunction [16]; however, the functional
significance of cytoplasmic •OH remains to be determined
since there is no way to scavenge these radicals specifically.
Other •OH scavengers such as, thiourea, H2, salicylates, and
flavonoids are likely distributed throughout the cell because
of their low molecular-weight [16-19], and scavenge •OH
indiscriminately. In addition, many of these compounds have
cytotoxic effects, such as damage of DNA, proteins, lipids,
and other macromolecules [20-22]. As such, the function of
compartment-specific •OH are still unknown.

We recently developed TA293, a novel antioxidant based 
on the structure of ascorbic acid (also known as vitamin C). 
Ascorbic acid is a water-soluble molecule with antioxidant 
activity derived from its enediol structure and oxidized to 
dehydroascorbic acid via a radical intermediate [23]. 
Similarly, TA293 was designed to act as resonance system 
by adding plural C-C double bonds to the enediol structure; 
thus, the structure becomes resonance-stabilized after 
delocalization of its radical, thereby suppressing the 
oxidation reaction. In addition, TA293 is a more lipophilic 
compound that can permeate various tissue [24]. We also 
synthesized mitochondrial-specific mitoTA293 by adding the 
mitochondrial localization signal triphenylphosphonium to 
the TA293 molecule [25]. A subsequent analysis of the effects 
of pyocyanin-induced cytoplasmic •OH in the presence of 
TA293 demonstrated the radical’s central role in 
inflammation, cellular senescence, and apoptosis. 

Effects of TA293 and mitoTA293 

A preliminary analysis of TA293 and mitoTA293 function 
revealed that these compounds exhibit •OH scavenging 
activity, but have no effect on O2

– and H2O2 in a cell-free 
system. To study the effect of each compound in vivo, cells 
were treated with pyocyanin and antimycin A to induce ROS 
formation in the cytoplasm and mitochondria, respectively 
[26, 27]. As expected, TA293 appears to selectively scavenge 
•OH in the cytoplasm, whereas mitoTA293 acts solely in the
mitochondria. Moreover, conventional •OH scavengers such
as thiourea can induce cytotoxicity, but neither TA293 nor
mitoTA293 hindered the viability of established cell lines or
primary cells in culture. Thus, these data suggest that TA293
and mitoTA293 may help elucidate the physiological
significance of •OH localized to the cytoplasmic or
mitochondria.

TA293 scavenges pyocyanin-induced cytoplasmic •OH. 

To further elucidate the effects of TA293 and mitoTA293, 
we evaluated oxidative stress in primary mouse embryonic 
fibroblasts (MEF) derived from Keap1-dependent oxidative 
stress luciferase indicator transgenic (OKD48-Tg) mice that 
harbor an antioxidant response element (ARE)-regulated 
luciferase reporter [28]. Notably, TA293 suppressed 
pyocyanin-induced oxidative stress and apoptosis, but not 
that induced by antimycin A treatment; while the opposite 
was true for mitoTA293. Moreover, we evaluated oxidative 
stress activity in pyocyanin-treated OKD48-Tg mice in the 
presence or absence of TA293. As expected, TA293 
suppressed systemic pyocyanin-induced oxidative stress and 
biooxidation, but not that resulting from antimycin A. 
Conversely, mitoTA293 only suppressed antimycin 
A-induced oxidative stress and biooxidation. Together, these 
findings suggest that cytoplasmic and mitochondrial •OH 
play key roles in oxidative stress within their respective 
compartments in vitro and in vivo. 

We then attempted to identify the organ most impacted by 
the presence of cytoplasmic •OH. This analysis revealed that 
pyocyanin induced-oxidative stress is markedly increased in 
the lung and kidney, but not other organs such as the heart, 
liver, stomach, and spleen. Significantly, TA293 treatment 
attenuated oxidative stress in these areas, supporting that 
cytoplasmic •OH specifically induced oxidative stress in lung 
and kidney in vivo. Subsequent histological examination 
showed pyocyanin-induced oxidative damage in the lung 
alveoli and kidney tubules, which was mitigated in 
TA293-treated counterparts. Collectively, these data indicate 
that the cytoplasmic •OH play a central role in oxidative 
damage that occurs in organs highly sensitive to radicals in 
this subcellular compartment. 

TA293 suppresses cytoplasmic •OH-induced cellular 
senescence, inflammation, and apoptosis. 

Recent studies indicate that pyocyanin elicits oxidative 
stress and premature cellular senescence [29]. Senescent cells 
secrete senescence-associated secretory phenotype (SASP) 
factor, such as IL-6, resulting in chronic inflammation, 
macrophage infiltration, senescent cell clearance, and tissue 
remodeling [30, 31]. Notably, we found that TA293 suppressed 
cellular senescence induced by pyocyanin in vitro. The CDK 
inhibitors p21 (WAF1/ CIP1) and p16 (INK4A) induce cell 
cycle arrest and cellular senescence [32], and are highly 
expressed in response to oxidative damaged tissues; 
however, TA293 dampened the expression of these factors. 

IκB phosphorylation-mediated NF-κB signaling has 
also been shown to promote SASP factor secretion [33]. 
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Consistently, we found elevated IκB phosphorylation in 
tissues with oxidative damage, but this was attenuated in the 
presence of TA293. In addition, TA293 was sufficient to 
block pyocyanin-induced inflammation in IL-1β-based 
dual-operating luciferase transgenic (IDOL-Tg) mice [34]. 
Moreover, TA293 suppressed mRNA expression SASP 
factors (e.g., proinflammatory cytokines, chemokines, and 
extra cellular matrix remodeling factor) and apoptosis in 
tissues with oxidative damage in pyocyanin-treated mice. 
Since cellular senescence, inflammation, and apoptosis are 
triggered by common stimuli such as DNA damage or 
oncogenic stress [35], it is not unsurprising that cytoplasmic 
•OH-induced oxidative damage elicited these cellular
responses in vivo and could be attenuated by TA293
treatment.

Conclusions 

In summary, the results of our study provide scientific 
evidence that TA293 suppressed cytoplasmic •OH-induced 
oxidative stress, cellular senescence, inflammation, and 

apoptosis; whereas mitoTA293 attenuated mitochondrial 
•OH-induced oxidative stress and apoptosis (Fig. 1). Based
on these findings, we propose a novel hypothesis that
cytoplasmic and mitochondrial •OH respectively induce
oxidative damage in cytoplasm and mitochondria, resulting
in oxidative stress in each individual subcellular
compartment.

Most importantly, this study provided the first 
experimental evidence that TA293 is a non-toxic compound 
capable of specifically scavenging cytoplasmic •OH. For this 
reason, we believe that TA293 will be a useful tool to 
elucidate the mechanisms of •OH-induced inflammation, 
cellular senescence, and apoptosis; and may serve as a 
prototype to develop therapeutic agents for cytoplasmic 
•OH-induced disease.
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Figure 1. Cytoplasmic •OH-induced cellular senescence, inflammation, and apoptosis. TA293 attenuated cytoplasmic •OH-induced 
oxidative stress, cellular senescence, inflammation, and apoptosis; whereas mitoTA293 suppressed mitochondrial •OH-induced oxidative 
stress and apoptosis. These finding suggested that cytoplasmic and mitochondrial •OH induce oxidative damage in their respective 
subcellular compartments. 
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