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Glioblastoma Multiforme (GBM, Astrocytoma grade-IV) is the most common primary malignant brain tumour 

in adults and unfortunately the most deadly. Patients with GBM exhibit a deficient anti-tumor immune 

response. Immunotherapy is rapidly becoming one of the pillars of anti-cancer therapy. GBM has not received 

similar clinical successes as of yet, a fact which may be attributed to its relative inaccessibility, its poor 

immunogenicity, or any of the many other immune mechanisms known to be inactivated in these tumor cells. 

Focused Ultrasound (FUS) is emerging as a promising treatment approach. The effects of FUS on the tissue are 

not merely thermal. Reported FUS-induced acoustic cavitation which carries both mechanical and molecular 

implications as well as FUS induced immunomodulation play important roles. This is a concise research 

highlights on a comprehensive report by the same group. We separately discuss the different pertinent 

immunosuppressive mechanisms harnessed by GBM and the immunomodulatory effects of FUS. The three 

modes of FUS action can all be assigned a molecular final common pathway of immunomodulation. Thermal 

ablation induced immune effects, microbubbles effects in disrupting the BBB and introducing antigens and 

drugs to the tumor milieu as well as FUS induced molecular effects are discussed. The effect of FUS on the 

pro-inflammatory cytokines secretion profile, the stress response, the intra-tumoral immune-cells populations, 

dendritic cells activity moderation and FUS induced increased cytotoxic cells potency are all discussed. A 

conceptual synopsis of the synergistic treatment of GBM utilizing FUS and immunotherapy is presented. The 

interaction of multiple approaches harnessing immune-components and circumventing immunosuppressing 

mechanisms may herald a new era in the fight against GBM. 
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Introduction 

Glioblastoma Multiforme (GBM, Astrocytoma grade-IV) 

is the most common primary malignant brain tumour in 

adults and unfortunately most deadly. The classical 

histological characterization of GBM is clearly becoming 
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Table 1. GBM related Immune-evasion and immunosuppression mechanisms, review* 

Ref. Proposed Mechanism Comments 

27 Allelic loss of 

#10q. 

Disruption of two tumor suppressor 

genes in this locus (i.e. DBMT1, 
PTEN). 

Decreased rate of infection in 

patients with this allelic loss 
Impaired antitumor immunity and 

impaired systemic immunity 

leading to bacterial infections. 

28 PTEN and protein kinase B PTEN loss increases B7-H1 

expression, and peripheral 

anergy. 

34 Altered 

mitogenic 

pathways 

Dominant Th2 type cytokines 

release, supporting anergy and 

tolerance to the tumor 

Tolerance and anergy to the tumor 

cells 33 PI3-K / PTEN. 

35 

p16/pRb/CDK4,  
p53/ MDM2/ p14ARF, 

EGFRvIII 
PDGF 

30 Increased Treg 

(CD4+FoxP+ T 
cells) population 

>2.5-fold increase The frequency of T-regs was shown 

to correlate directly with in vitro 
suppression of T cell activation. 

31 Increased Treg cells in TIL’s of human
GBM.

32 Increased Treg and microglia in GBM. 

40 Immunosuppres
sive cytokines 

release 

Interferon-γ Supporting development of 
tolerance and anergy to the tumor 

cells 
29 IL-10 

TGFβ 

36 MHC-I 
downregulation 

tumor’s ability to down-regulate or 
express low levels of class-I MHC 

hiding the tumor cells presence from the cellular arm of the immune 
system 

37 HLA-G 

expression 

aberrant expression of this 

non-classical MHC-I molecule, 

structurally related to classical MHC 

class Ia (HLA-A, -B, -C). 

Render cells resistant to direct alloreactive lysis, and inhibits the 

alloproliferative response. 

38 Prevents efficient priming of cytotoxic T cells. 

39 Anti-Apoptosis Upregulation of anti-apoptotic proteins (i.e. Survivin), rendering cells immortal and unresponsive to normal death 
signals 

Abbreviations: PTEN - Phosphatase tensin, DBMT - Deleted brain malignant tumor, PI3-K - phosphatidylinositol 3'-kinase 
signaling pathway, EGFRvIII - Epidermal growth factor receptor variant III, PDGF - Platelet-derived growth factor receptor, 

TIL’s-Tumor Infiltrating lymphocytes. *based on Cohen-Inbar et al [1] 

less valid with respect to its prognostic significance serving 

as somewhat of a wastebasket category. Multiple molecular 

subsets of GBM are now known, carrying different 

prognostic horizons [1]. Despite standard of care treatment, 

the median survival of a patient harboring a GBM is less than 

2 years, a grim figure which changed very little in the past 

decades, proving resistant to most developments and 

revolutions incurred on modern medicine [2-4]. The unique 

nature of GBM and its inherent challenging features was 

evident as early as 80 years ago. Early reports of GBM 

patients who endured a post-operative surgical-site infection 

who surprisingly exhibited longer survival sparked an 

interest in many clinicians, suspecting an important role for 

the immune system both in disease progression as well as in 

tumor triumph. Since these initial pivotal observations, with 

developing techniques and widespread interest, multiple 

studies were put forward describing different molecular 

immunosuppressive mechanisms taking place in GBM cells 

and microenvironment, claiming these to be the dominant 

key events (table 1) [1, 5]. Unfortunately, things are not as 

straightforward or simple, and both arms of the immune 

system are known to be hampered in GBM, as do many other 

anatomical barriers, micro-environmental conditions and 

features unique to tumors within the central nervous system, 

once termed as immune-privileged [27-28]. 

Continuous-wave (CW) high intensity focused ultrasound 

(HI-FUS) is emerging as a promising treatment approach. It 

is the only noninvasive thermal technique that allows for 

real-time imaging of the treatment progress using 

MR-Thermometry [41]. Yet, the effects of FUS on the tissue 

are not merely thermal, shown to induce mechanical acoustic 

cavitation, carrying both mechanical and molecular 

implications and also modulate the host antitumor immune 

responses (table 2) [5]. We present a short report of research 

highlights capturing the essence of a paper we recently 

published [5]. We will briefly discuss different pertinent 

immunosuppressive mechanisms harnessed by GBM and the 

immunomodulatory effects of FUS.A potential conceptual 

synopsis of the two is presented. As discussed, the 

synergistic treatment of GBM utilizing HIFU and 

immunotherapy has molecular evidence to support it. For 

ease of grasping, we will divide our discussion to GBM 

immune-evasion and immune-suppressing mechanisms, 

FUS-mediated immunomodulation and a synopsis of these 

two. 

GBM mediated immune-evasion 

Mounting an effective brain anti-GBM immune response 

requires that certain requirements are met. GBM cells  
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Table 2. Focused Ultrasound Immunomodulatory effect – Literature Review 

Ref. Indication Immunologic Effect 

Mechanism Comments 

6 Breast CD4+/CD8+ 
inversion 

CD3+ 
increase 

NK  cell 
stimulation 

Increased 
apoptotic 

markers 

Increased TIL’sϦ, NK-cells and CD4+/CD8+ inversion. 
Increased expression of apoptotic Fas-L, Granzyme-B, 

Perforin+ TIL’s 

7 Pancreatic 

cancer 

CD4+/CD8+ inversion and CD3+ increase in 10 patients (NP€) 

8 OS£ (6), 
HCCα (5), 

RCCβ (5) 

Increased CD4+ and inversion of the CD4+/CD8+ 

9 Choroidal 
Melanoma 

2/3 patients reverted the ratio from abnormal levels 

10 HCC Resistance 

to tumor 
re-challenge 

Increased CD4+ and inversion of the CD4+/CD8+ 

11 NB∞ Resistance to tumor re-challenge 
12 Prostate Anti-Inflamma

tory Cytokines 

decrease 

Sonicted tumor cells downregulate STAT-3 (less 

proliferation of immature DCs), decreased T-regulatory 

population in the spleen and tumor draining lymph nodes. 
13 HCC (13), 

Sarcoma (2) 

Decreased serum levels of: VEGF, TGF-β1, TGF-β2. 

14 Breast HSPπ HSP-70 and epithelial membrane antigen showed 100% 
expression in the tumor debris. 

Cytokines found in the tumor milieu: TGF-β1 (57%), 

TGF-β2 (70%), IL-6 (48%), IL-10 (61%), VEGF (30%) 
15 Prostate 

cancer 

Pro-Inflamm

atory 

Cytokines 
increase 

Increased expression of HSP-72, HSP73, GRP75, GRP78 

Increased release of IL-2, IFNγ, TNFα 

Decreased release of IL-4, IL-5, IL-10 
16 CRCγ DCδ and MPSε 

activation 

ATP and HSP-60 release from CRC cells. 

DC and MPS activation (mechanical more than thermal) 
Enhanced IL-12 and TNFα secretion. 

17 HCC Increased 

CTL’sƜ 
activity 

Increased IFNγ and TNFα secretion and CTL TIL’s. 

18 HCC IFNγ and TNFα increased secretion. 
19 CRC 

R
es

is
ta

n
ce

 t
o
 

tu
m

o
r 

re
-c

h
al

le
n

g
e The mechanical FUS effect is better than the thermal effect in 

DC activation. 

Increased CTL’s activity and IFNγ secreting cells. 

20 HCC 
21 Melanoma Increased CTL’s cytotoxicity, no increased risk of metastases 

after HIFU. 

22 Breast DCδ and MPSε 
activation 

Increased activation and infiltration of DC’s and MPS. 
Increased expression of CD80, CD86 in sonicated tumors. 

23 Melanoma 

24 NA HSPπ Peak HSP-70 expression at 6-48 hours after sonication, 
persisting for 96 hours. 

25 Melanoma, 

Fibroma, 

SCCƩ 

HSP-70 expression induced at a lower temperature than heat 

stress alone. 

26 Prostate (5), 

Bladder 

TCC** (4) 

HSP-27 increased expression, most notably 2-3 hours after 

sonodynamic ablation. 

The effect is still evident 5-8 days post sonication. 

ΩNumber of patients, ζNot applicable, usually refers to pre-clinical studies, ∞Neuroblastoma, *Cluster of Differentiation, €Not 
statistically Significant, £Osteosarcoma, πHeat Shock Proteins, **Transitional cell carcinoma, αHepatocellular Carcinoma, βRenal 
Cell Carcinoma, γColorectal Carcinoma, δDendritic Cells, εMononuclear phagocyte system (i.e. macrophages), ƜCytotoxic (CD8+) 
T-lymphocytes, ƩSquamous Cell Carcinoma, ϦTumor infiltrating lymphocytes. +Based on Cohen-Inbar et al [5] 

developed mechanisms to evade or block its development at 

multiple steps (Table 1) [1, 5]. Tumor associated target 

antigens must be sufficiently different from self-antigens, 

avoiding the development of immune-tolerance and anergy 

to self (and consequently to the tumor) on the one hand or the 

development of an auto-immune response on the other. 

Tumor cells must express major histocompatibility complex 

(MHC) molecule in adequate numbers to present antigens to 

Cytotoxic T-cells (CTL’s) in order to mount a specific CTL’s 

effector mediated response. The activated effector CTL’s 

should maintain their potency and activity during migration 

through involved brain parenchyma and its resident cells, as 

well as during the interaction with the tumor cells. A local 

inflammatory response should than be instigated and 

properly regulated. The multitude of immunosuppressive 

mechanisms (both active and passive) as well as 

immune-evasion techniques attributed to GBM cells are 

summarized in Table 1 [1, 5]. These mechanisms 

independently, support the evolution of anergy and tolerance 

to the tumor. Of note, the complex interplay between the 

different mechanisms stated is complex and largely 

unknown.  
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FUS-mediated immunomodulation 

FUS exerts its effect on the tumor cells utilizing three 

complementary “modes” of action: thermal ablation, acoustic 

cavitation and immunomodulation. The third mechanism 

employs the uniform low-level heating of a region of interest 

not killing the cells [14, 42-43]. The three modes of action can 

be assigned a molecular final common pathway of 

immunomodulation. Thermal ablation results in two 

complimentary effects, i.e. the release of immunogenic 

cellular antigenic debris [44] into the interstitial space 

activating Dendritic cells (DC’s) [18], as well as inducing the 

surviving tumor cells to up-regulate danger signals such as 

heat shock proteins (HSP) and adenosine tri-phosphate 

(ATP), both highly potent activators of innate immunity [16,

25, 45]. Mechanical cavitation was shown to facilitate better 

BBB penetration for drugs, antigens and immune cells as 

well as results in lysis related tumor debris [46-49]. The FUS 

microbubble (MB) induced BBB-disruption effects last 

several hours and can be localized to the tumor region, prior 

to returning to the pre-FUS state [50]. FUS-MB was reported 

to increase the intra-tumoral concentrations of delivered 

liposomal doxorubicin [51], temozolomide [52], interleukin-4 
[53], nanoparticles, DNA, plasmid vectors, and antibodies 
[54-55], and IL-12 [56]. 

Pulsed-mode FUS with increased negative pressures was 

shown to boost the systemic antitumor immune response 

through multiple mechanisms. Table 2 [5] presents a brief 

overview of key preclinical and clinical studies, per different 

tumor type, segregated based on the proposed FUS-induced 

immunomodulatory effect. FUS was shown to support and 

amplify an anti-tumor immune response, prolong overall 

survival and protect from growth of new tumors when 

re-challenged (Table 2) [5]. One should note that all 

immune-modulating effects discussed hereafter and 

presented in table-2 were described on multiple tumor types, 

not restricted to studies conducted in the CNS or on GBM 

cell lines or tissue samples. The assumption that these effects 

are tumor type independent, assigned only to FUS, were not 

validated objectively.  

FUS mediated immune effects can be grouped into its 

effects on cytokines and the stress response, its effects on 

peripheral and intra-tumoral immune cell populations, FUS 

mediated augmentation of Dendritic cell activity or a more 

general, increased CTL’s potency and FUS mediated 

resistances to tumor re-challenge. The latter refers to 

lengthened survival and immunomodulatory effects of FUS 

noted in different reports but lacking a proven exact 

molecular mechanism [11, 20, 23]. HSP’s are known potent 

immune-stimulants, able to bind tumor peptide antigens and 

enhance tumor cell immunogenicity [57-62]. FUS was shown 

to up-regulate the expression of HSP70 both in-vitro and 

ex-vitro [16, 24, 25]. An increased HSP-70 expression was 

detected on the surviving cell membrane of 23 patients with 

breast cancer treated with HIFU ablation[14] FUS was shown 

to enrich the TIL’s population in immune-potent 

pro-inflammatory potent anti-tumor effector cells in human 

breast cancer specimens [6, 63], posterior uveal melanoma [9], 

pancreatic carcinoma [7], osteosarcoma [8], hepatocellular 

carcinomas (HCC) [8], and Renal Cell Carcinoma (RCC) [8]. 

FUS was shown to enhance the infiltration capabilities and 

activity of dendritic cells (DCs) [36, 40] as well as other antigen 

presenting cells [22] in the treated tumor, leading to an 

increased expression of costimulatory molecules and 

enhanced secretion of IL-12 (via DCs) and TNF-α 

(macrophages) [16]. Zhang et al [20] demonstrated that tumor 

debris induced by FUS could serve as an effective 

immunogenic vaccine. Increased CTL’s Potency and effector 

function after FUS, reported as increased IFNγ and TNFα 

secretion [17-19] or increased direct CTL’s mediated 

cytotoxicity [21] serves as another avenue of 

immunomodulation. 

Synopsis& Future directions 

The complexity of interacting immune-evasion and 

immunosuppressing mechanisms dysregulated in GBM cells, 

mechanisms modulated by FUS, as well as tumor specific 

and patient (i.e. immune system) specific mechanisms is 

largely unknown. A theoretical action-reaction scheme is 

presented in previous comprehensive report [5]; connecting 

certain known GBM-evasion mechanisms with the FUS 

induced counter response. One should note that a single FUS 

mediated effect may influence multiple immune mechanisms 

and vice versa. There seem to be a theoretical basis for the 

effectiveness of FUS immunomodulation, synergistically 

supporting various immunotherapeutic approaches in 

overcoming many of the GBM mediated immune-resistance 

mechanisms. Future research still needs to be done to both 

dissect the different FUS-induced molecular and 

immunological mechanisms at play as well as to optimize the 

FUS treatment method. 

Conclusions 

No single treatment modality will cure GBM. In recent 

years, immunotherapy has come to the forefront of 

anti-cancer therapy. While some cancer types have been 

amenable to immunotherapeutic approaches, GBM has not 

received similar clinical successes, likely due to its poor 

immunogenicity and for its location in the immunologically 

distinct CNS. We briefly review FUS-induced 

immunomodulation, which can be harnessed to current and 

developing immunotherapies approaches. These research 



Inflammation & Cell Signaling 2017; 4: e1228. doi: 10.14800/ics.1228; © 2017 by Or Cohen-Inbar

http://www.smartscitech.com/index.php/ics 

Page 5 of 7 

highlights of a broader report by our group[5] serve to better 

define the essence of new findings and existing gaps in our 

understanding. Further study to the synergistic collaboration 

of different therapeutic approaches and the elaborate 

molecular immune interplay will shed light on this 

formidable challenge. 
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APCs: antigen-presenting cells; ATP: Adenosine 

triphosphate; BBB: blood brain barrier; CD: cluster of 

differentiation; CRC: colorectal adenocarcinoma; CTLs: 

cytotoxic T cells; CW: continuous-wave; DCs: dendritic 

cells; EGFR: epidermal growth factor receptor; FUS: focused 

ultrasound; GBM: glioblastoma multiforme; HCC: 

hepatocellular carcinomas; HIFU: high intensity focused 

ultrasound; HLA: human leukocyte antigen; HSP: heat shock 

proteins; IFN: interferon; IL: interleukin; LPS: 

lipopolysaccharide; MB: microbubbles; MHC: major 

histocompatibility complex; PTEN: phosphatase tensin; 

RCC: renal cell carcinoma; TCR: T cell receptor; TH: T 

helper cell; TILs: tumor-infiltrating lymphocytes; TNF: 

tumor necrosis factor. 
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