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Recent studies found that high glucose increases the expression of tumor suppressor factor p53. And in the process 

of diabetic kidney disease (DKD) development p53 involves in regulating multiple signaling pathways. In addition, 

microRNAs (miRNAs) involve in many diseases pathogenesis. And miRNAs affect DKD development via adjusting 

multiple mechanisms. More importantly, p53/miRNAs signaling may participate in a variety of signaling pathways 

regulating kidney inflammation and fibrosis to control DKD pathological development. However, the mechanism 

of p53/miRNAs signaling participating in DKD pathological development is not yet clear. To illuminate the role of 

p53/miRNAs signaling may inspire a new thinking for elucidating the pathological mechanism of DKD, and 

provide a new theoretical basis for the prevention and treatment of DKD. 
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Currently, with the improvement of people’s living 

standard and the changes in life style, the incidence of type 2 

diabetes mellitus (T2DM) increased year by year. Diabetic 

kidney disease (DKD) is one of the most main microvascular 

complications of T2DM. And it is also one of the main reasons 

leading to end stage renal disease. More importantly, statistics 

data have shown that 20%-40% of people in patients with 

diabetes can develop DKD [1]. Consequently, early diagnosis 

and treatment of DKD could reduce or delay the onset of 

diabetic kidney damage, and improve the quality of patient’s 

life. It will provide important clinical significance. 

 

Recent study found that high glucose raises the expression 

of p53 in kidney. Inhibiting p53 expression attenuates high 

 
glucose-induced acute kidney injury [2]. Besides, p53 and 

microRNAs (miRNAs) may regulate transforming growth 

factor-β1 (TGF-β1) expression in diabetes mice to affect the 

development of diabetes renal fibrosis [3]. However, the role of 

p53 regulating miRNAs in DKD pathological mechanism is 

not yet clear. To clear the role of p53/miRNAs signaling in 

DKD mechanism may help to provide new train of thought for 

elucidating the pathological mechanism of DKD. In this paper 

we will review the role of p53/miRNAs signaling in DKD. 

 

The function of p53 

 
Transcription factor p53 plays an important role in the 

process of inhibiting tumor. It inhibits tumor formation by 
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Figure 1. p53/miRNAs signaling related to diabetes development. HG: high glucose; Akt: 
serine/threonine kinase; AMPK: activating adenosine monophosphate activated protein kinase; SIRT1: sirtuin 
1; FoxOs: forkhead box O; ROS: reactive oxygen species. 

 

means of promoting DNA repair, preventing cell cycling, 

inducing cell aging and apoptosis [4, 5]. Sirtuin 1 (SIRT1) 

weakens the effect of p53 inhibiting tumor via deacetylation 
[6]. p53 activated by SIRT1 inhibitor increases the activity of 

nuclear factor κB p65 (NF-κB p65). Furthermore, it promotes 

cell apoptosis and the expression of pro-inflammatory factor 

as well [7]. SIRT1 may also suppress the activity of forkhead 

box O (FoxO) family via down-regulating p53 expression. 

And then it reduces reactive oxygen species (ROS) expression 

and apoptosis related to oxidative stress [8]. Activating 

adenosine monophosphate activated protein kinase (AMPK) 

phosphorylation can activate SIRT1, while suppressing 

AMPK activity can increase p53 acetylation [9]. It suggests that 

increasing the activity of AMPK phosphorylation may activate 

SIRT1 and attenuate the acetylation of p53, which results in 

inhibiting the activity of NF-κB p65 and FoxO. Thereby, 

AMPK/SIRT1 signaling inhibits cell apoptosis and decreases 

the expression of pro-inflammation factor via down-regulating 

p53. 
 

Although p53 often acts as a protective factor in cancer, it 

is a pathogenic molecule in many non-cancer diseases. In islet 

β cell cytoplasm p53 induces mitochondria dysfunction and 

impaired insulin secretion. As a result, it promotes diabetes 

development [10]. Besides, high glucose increases p53 

expression via inhibiting AMPK/SIRT1 signaling pathways in 

liver cells, which causes lipid accumulation and insulin 

resistance [11]. Further study used metformin to activate high 

glucose-inhibited AMPK/SIRT1 signaling pathway. And 

results revealed that the expression of p53 protein significantly 

decreased. While over-expressed p53 reduces the expression 

of SIRT1 protein and inhibits metformin-activated AMPK 

signaling, accompanied by the decrease of triglycerides [12]. 

It suggests that there is a bidirectional interaction between 

 p53 and AMPK/SIRT1 signaling in the pathogenesis and 

treatment of diabetes. However, the specific mechanism of 

p53 in diabetes and its complications is not yet clear. 

 

The function of microRNAs 

 

As a kind of small non-encoded RNA in body, miRNAs can 

regulate target gene expression at the translation level, which 

depends on base pairing between the ‘seed’ area of miRNAs 

and the 3’ untranslated regions of target genes’ mRNAs [13]. 

Bioinformatics research found that miRNAs can adjust more 

than 60% gene expression in body [14]. miRNAs play an 

important role in cell growth, differentiation, apoptosis, and 

metabolism process. In addition, miRNAs are also involved in 

the pathogenesis of many diseases, such as oxidative stress, 

cardiovascular, cancer, and diabetes [15,16]. 

 

The expression of miR-200b, miR-429, and miR-200c 

increase significantly in diabetic vascular smooth muscle 

cells. And these miRNAs raise the expression of 

cyclooxygenase-2 (COX-2) and monocyte chemoattractant 

protein-1 (MCP-1), resulting in promoting inflammation [17]. 

miR-187 can decrease the expression of homeodomain- 

interacting protein kinase-3 (HIPK3), a factor regulating 

insulin secretion, and then reduce persistent hyperglycemia 

caused by glucose-stimulated insulin secretion [18]. Besides, 

high glucose promotes foxO3a expression via raising miR- 

30d expression, which raises the expression of inflammatory 

molecules and promotes cell apoptosis [19]. Research on 

diabetes patients also found that, with an increased level of 

urinary albumin, serum miR-130b level was significantly 

decreased and significantly negatively correlated with the 

serum levels of TGF-β1, hypoxia inducible factor 1α 

http://www.smartscitech.com/index.php/ics


Inflammation & Cell Signaling 2016; 3: e1132. doi: 10.14800/ics.1132; ©  2016 by Can Wu, et al. 

http://www.smartscitech.com/index.php/ics 

Page 3 of 6 

 

 

 

 

 

Figure 2. p53/miRNAs signaling related to diabetic kidney disease development. GAS1: 
growth arrest-specific 1; SIRT1: sirtuin 1; AMPK: activating adenosine monophosphate 
activated protein kinase; Akt: serine/threonine kinase; HG: high glucose; ZEB1: zinc finger E- 
box binding homeobox 1; TGF-β1: transforming growth factor-β1; STAT3: transcription 3; 
mTOR: mammalian target of rapamycin. 

 

 (HIF-1α), and fibronectin (FN) [20]. It prompts that miRNAs 

may influence the development of diabetes via adjusting 

multiple signaling mechanisms. Furthermore, it may play a 

role in DKD pathogenesis. 

 

p53/microRNAs and diabetes 

 

Although more and more evidences suggests that miRNAs 

play a regulatory role in metabolic disease, the mechanism of 

p53 participating in the process of miRNAs regulating 

metabolism is not clear yet [18,19]. 

 

p53 can inhibit glycolysis by regulating miR-34, and then 

adjust the activity of a series of glycolytic enzymes such as 

hexokinase 1, hexokinase 2, and glucose 6 phosphate 

isomerase to enhance mitochondrial respiration [21]. 

Cristhianna et al. [22] found that miR-199a-5p level has certain 

connection with diabetes development. Serine/threonine 

kinase (Akt) reduces miR-199a-5p expression, accompanied 

by higher SIRT1 expression. And overexpression of miR- 

199a-5p can reverse the change of SIRT1 expression [23]. 

What’s more, studies found that p53 not only regulates the 

activity of Akt signaling pathways [24], also regulates 

AMPK/SIRT1 signaling pathways involved in the 

pathogenesis of diabetes mellitus [11,12]. It suggests that p53 

may participate in the process of miRNAs regulating diabetes 

pathogenesis.  It  is important to further explore the 

mechanism of p53/miRNAs in the development of diabetes 

and its complications. (Fig. 1) 

 

p53/microRNA and diabetic kidney disease 

 

The early change of diabetic kidney damage is glomerular 

hemodynamics change, including high filtration and high 

perfusion damage [25]. And the main pathological features of 

DKD are glomerular basement membrane thickening, 

extracellular matrix accumulation [26], and interstitial 

inflammation [27]. It promotes the process of kidney structure 

damage, such as glomerular sclerosis and interstitial fibrosis, 

which eventually leads to kidney failure. p53/miRNAs 

signaling may adjust a variety of signaling pathways to 

regulate DKD development. But the mechanism has not been 

fully elucidated. 

 
The role of p53/miR-34 signaling in DKD 

 
p53 regulates cell apoptosis via inhibiting miR-34 

expression [28]. Meanwhile, miR-34a can activate p53 to 

promote cell apoptosis by inhibiting SIRT1 expression [29]. In 

energy metabolism, p53 regulates miR-34 expression to 

inhibit glycolysis, and then enhances mitochondrial 

respiration [21]. Recent study has found that down-regulating 

miR-34 inhibits cell proliferation via inhibiting growth 

arrest-specific 1 (GAS1) in glomerular mesangial cells 
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cultured with high glucose. What’s more, down-regulating 

miR-34 can alleviate glomerular hypertrophy in diabetes mice 
[30]. It suggests that p53 may play a role in the process of 

diabetic kidney damage via regulating miR-34 expression. 

(Fig. 2) 

 
The role of p53/miR-192 signaling in DKD 

 

The expression of miR-192 increases in patients with early 

DKD [31]. Furthermore, specifically inhibiting renal miR-192 

expression alleviates renal fibrosis [32]. More importantly, 

study found that there is an interaction between p53 and miR- 

192, which regulates the downstream zinc finger E-box 

binding homeobox 1 (ZEB1) and TGF-β1 expression in 

diabetes mice renal. As a result, it affects the development of 

diabetic renal fibrosis [3]. It suggests that p53 may participate 

in the process of diabetic renal fibrosis through the mutual 

adjustment with miR-192, resulting in affecting the 

pathological development of DKD. (Fig. 2) 

 
The role of p53/miR-199a and AMPK/SIRT1 signaling in 

DKD 

 

High glucose raised p53 expression via inhibiting 

AMPK/SIRT1 signaling pathways [11]. Further evidence using 

metformin to activate AMPK/SIRT1 signaling can reduce p53 

expression, while over-expressed p53 reduces the expression 

of SIRT1 [12]. Activating the phosphorylation of AMPK 

suppresses insulin resistance [33]. It also alleviates the activity 

of high glucose-stimulated mammalian target of rapamycin 

(mTOR)/p70S6K signaling pathways in glomerular mesangial 

cells, and thereby inhibits the expression of cell proliferation 

and fibrosis [34]. 

 

Besides, high glucose increases miR-199a-5p expression in 

glomerular mesangial cells [35]. Meanwhile, Akt reduces miR- 

199a-5p expression and raises SIRT1 expression. And over- 

expressed miR-199a-5p revises the expression of SIRT1 [23]. 

The ectopic expression of p53 induces miR-199a-3p 

transcription, and then affecting the restructuring of mice 

embryonic fibroblast cells [36]. We speculate that p53 may 

regulate DKD development by AMPK/SIRT1 signaling 

pathways, in which process miR-199a may play a certain role. 

(Fig. 2) 

 

The role of p53/miR-21 and Akt/mTOR signaling in DKD 

 

miR-21 negatively regulates the expression of p53 [37]. And 

p53 also influents miR-21 expression via regulating signaling 

transduction and signal transducer and activator of 

transcription 3 (STAT3) [38]. miR-21 expression appears 

significant change in early DKD [39]. Besides, miR-21 

participates   in   diabetes   related   PI3K/Akt   signaling and 

mTOR signaling [40]. However, its function and mechanism is 

still controversial. Zhao H et al. [41] considered that miR-21 

regulates the activity of PI3K/Akt signaling to block 

glomerular stromal mast, which provides protection for early 

DKD [41]. Dey N et al. [41] considered that miR-21 may 

promote high glucose-induced mTOR expression and resulted 

in diabetic kidney damage. Research has found that activating 

p53 inhibits mTOR signaling [42]. Conversely, knocking out 

p53 gene significantly raises mTOR level and activates Akt 

protein [43]. More importantly, activating Akt/mTOR signaling 

increases DNA oxidative stress, and then promotes diabetic 

kidney damage [44]. It suggests that p53/miR-21 may 

participate in DKD development via regulating Akt/mTOR 

signaling. Further clarifying the mechanism is very important 

for clearing the pathogenesis of DKD. (Fig. 2) 

 
The role of p53/miRNAs and TGF-β/Smad signaling in 

DKD 

 

High glucose activates TGF-β/Smad signaling pathways to 

induce kidney ECM accumulating, which promotes interstitial 

fibrosis and glomerular mesangial expansion [25, 26]. There is a 

certain contact between miR-216, miR-217 and chronic 

kidney disease development. TGF-β up-regulates the 

expression of miR-216, 217 and activates Akt, resulting in 

contributing DKD development [45]. Kato M et al. [46] found 

that miR-192 could up-regulate these miRNAs expression. 

And p53 involved in the process of that miR-192 plays a role 

in the occurrence and development of DKD [3]. 

 

In addition, miR-224 not only plays a certain role in the 

development of diabetes, also plays a certain role in renal clear 

cell carcinoma [47]. More importantly, miR-224 participates in 

the process that TGF-β signaling pathways inhibits Smad4 

expression. And p53 could inhibit miR-224 expression by 

combining the promoter of miR-224 coding gene. Conversely, 

down-regulating miR-224 expression activates p53 and 

inhibits Smad4 expression [48]. Therefore, we speculate 

p53/miRNAs may regulate the activity of TGF-β/Smad 

signaling to affect DKD development. (Fig. 2) 

 

Based on the foregoing analysis, p53 and miRNAs has 

some correlation with DKD development. p53/miRNAs 

signaling may participate in a variety of signaling pathways 

regulating the pathological of DKD. However, the role of 

p53/miRNAs signaling in the pathological mechanism of 

DKD is not yet clear. To illuminate the role of p53/miRNAs 

signaling may inspire a new thinking for elucidating the 

pathological mechanism of DKD, and provide a new 

theoretical basis for the prevention and treatment of DKD. 
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