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Mast cells (MC) play an important role on allergic reactions initiated by the IgE/Antigen-dependent crosslinking 

of the high affinity IgE receptor (FcRI). Also, their participation on inflammatory innate immune responses 

triggered by Toll-like receptors (TLRs) is now well documented. Physiological conditions such as stress exert a 

modulatory effect on allergic reactions since stress mediators activate signaling cascades that either interfere or 

potentiate FcRI-dependent cytokine production. Moreover, the effect of stress mediators on cytokine 

production induced after TLR triggering has started to be addressed in this cell type. In a recent paper, we 

analyzed the effects of stress induced by forced swimming (FS) on the MC-dependent production of Tumor 

Necrosis Factor (TNF) induced by a single intraperitoneal injection of bacterial lipopolysaccharide (LPS) in 

mice. FS provoked an immediate and transient inhibition of LPS-elicited TNF accumulation in peritoneum, 

which lasted around to 30 min. With the aim to identify the mediator of stress responsible for the inhibition, we 

first blocked catecholamine release from adrenal glands (by adrenalectomy) or nerve terminals (with DSP4 

treatment). With these manipulations we observed an important increase on basal i.p. NF levels and enhanced 

LPS-induced TNF release without any effect on stress-induced inhibitory effects. We then pre-treated animals 

with the glucocorticoid receptor antagonist mifepristone and did not observe any change on basal levels or 

stress-induced inhibition of TNF release. Finally, we administered an antagonist of acetylcholine receptors 

(mecamylamine) and observed an increase on basal levels of i.p. TNF values together with an important 

blockage of stress effects. Those results show for the first time that early MC-derived TNF secretion after 

Toll-like receptors is negatively controlled by adrenaline and transiently inhibited by the anti-inflammatory 

cholinergic reflex. Our results adds to the description of stress effects on MC activation and open new avenues in 

the research on the control of chronic inflammatory reactions associated with long term MC-dependent cytokine 

secretion 
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Introduction 

Mast cells (MC) have been largely recognized as the 

initiators of allergic reactions [1]. After the crosslinking of the 

high affinity receptor for IgE (FcRI), this cell type secrete 

numerous pro-inflammatory mediators which are 

concentrated on intracellular granules (such as histamine and 

proteases) or synthesized de novo (such as cytokines and 

araquidonic acid derivatives). In response to IgE/Ag 

complexes, MC secrete preformed mediators by a rapid 

process known as “degranulation”, whereas exocytosis of 

cytokines triggered by other stimuli (such as bacterial 
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products) requires events that lead to slow piecemeal 

degranulation or activation of the constitutive secretory 

pathway [2]. Inflammatory mediators exert their effects on 

surrounding tissues, promoting vascular permeability 

changes, recruitment of leukocytes and pain generation. 

Although an initial deleterious role of MC activation was 

accepted, this concept changed with the discovery that MC 

can orchestrate protective inflammatory reactions against 

bacteria, parasites and tissue damage through the 

low-intensity triggering of the FcRI by monomeric IgE, or 

the activation of Pattern Recognition Receptors (PRR) such 

as NOD, RIG and Toll-like receptors (TLRs) [3]. Also, 

non-regulated, long-term cytokine secretion by MC has been 

associated with distinct chronic-degenerative diseases [1].  

The emerging role of MC as main controllers of the 

intensity of local inflammatory reactions triggered by stimuli 

of innate and adaptive immunity, and also as elements able to 

change the course of inflammation from a protective to 

deleterious outcome has lead to investigate the effect of 

stress on their activation. 

During the stress response biochemical changes are 

induced in certain brain areas, notably in limbic areas, which 

converge at the activation of the hypothalamic-pituitary 

-adrenal axis (HPA)[4]. In those conditions, afferent sensory 

neurons activate sympathetic and parasympathetic pathways 

that trigger the production and release of glucocorticoids, 

corticotropin releasing hormone (CRH), vasopressin, 

substance P, neurotensin, adrenaline and acetylcholine, 

among others. Many of these mediators have direct effects on 

the activation of mast cells, either enhancing or suppressing 

responses to various stimuli activation of innate and adaptive 

immunity. 

In some studies using mice subjected to physical and 

psychological stress, such as forced swimming (FS) or 

exposure to a predator, it has been shown that stress 

attenuates the production of pro-inflammatory cytokines in 

response to bacterial lipopolysaccharide (LPS) [5,6]. On the 

other hand, it has been described that various neuroendocrine 

mediators secreted during the stress response, such as 

corticotropin releasing factor (CRH), substance P and 

neurotensin increase degranulation of MC [7-9]. 

The following sections will describe some of the 

molecules relevant for cytokine secretion in MC stimulated 

through FcRI and TLR4 receptors and the effects of stress 

mediators in cytokine production in this particular cell type.  

Mast cells in adaptive immunity 

MC constitute the main cell type involved in the initiation 

of type I hypersensitivity (allergic) reactions because they 

secrete inflammatory mediators after IgE/antigen (IgE/Ag) 

-dependent crosslinking of the FcεRI receptor. The FcεRI is a 

heterotetramer composed by an α subunit that binds to IgE, 

one β subunit that (in mice) is implicated in the amplification 

of the signal, and two γ subunits which initiate the signaling 

cascade. Both the β and γ subunits possess immunotyrosine 

activation motifs (ITAMs), which are phosphorylated by Src 

family kinases, such as Lyn and Fyn.  

Receptor activation promotes the phosphorylation and 

recruitment of some adapter molecules such as linker of 

activation of T cells (LAT), Grb2-associated binder-like 

protein 2 (Gab2), Src homology 2 master-containing 

leukocyte phosphoprotein of 76 kDa (SLP-76) and others. 

Those adapters, in turn, allow the recruitment and activation 

of effector proteins such as phospholipase C (PLC), 

phosphoinositide 3-kinase (PI3K), and small GTPases. PLC 

hydrolyzes the phosphatidyl inositol 4,5-biphosphate 

(PI4,5-P2) producing inositol triphosphate (IP3) and 

diacylglycerol (DAG). IP3 binds to IPR receptors in the 

endoplasmic reticulum and generates calcium depletion in 

this compartment, while the DAG is responsible for 

activating the classical isoforms of PKC, event required for 

degranulation. Phospholipase A induces the formation of 

arachidonic acid derivatives and small GTPases lead to the 

activation of mitogen-activated protein (MAPK) that 

stimulate some transcription factors to promote de novo 

synthesis of cytokines [10-12] (Figure 1). 

Activation of the FcεRI signaling system is related to type 

I hypersensitivity reactions, such as those involved in asthma 

and atopic dermatitis. In those cases, inflammatory mediators 

secreted by the FcRI signaling system leads to 

bronchoconstriction, increased vascular permeability and 

vasodilation [13, 14].  

Mast cells and innate immunity  

MC express pattern recognition receptors (PRRs) such as 

the Toll-like 4 receptor. TLR4 activation is associated to the 

activation of transcription factors (specially NFB) to induce 

de novo cytokine synthesis and their secretion by the 

constitutive pathways, but also induce release of preformed 

mediators by a mechanism known as piecemeal 

degranulation [13]. The most studied ligand for TLR4 receptor 

in MC is the lipopolysaccharide (LPS) from Gram-negative 

bacteria. 

The intracellular response to LPS in MC is initiated by the 

TLR-4 dependent recruitment of the adapter protein MyD88 

(since the activation of MyD88-independent pathways has 

not been reported in this cell type). After this, the TRAF6 
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ubiquitin ligase leads to TAK1 phosphorylation, and TAK1 

bifurcates the signal transduction system on two main 

branches: one leading to the activation of MAP kinases 

(ERK, p38 and JNK) and the IKK-dependent activation of 

NFB. 

Recent studies from our laboratory indicate that IKK and 

ERK phosphorylation are directly related to the process of 

TNF secretion in mast cells. The IKK inhibitor BAY11-7085 

was able to reduce the secretion of TNF in bone 

marrow-derived mast cells (BMMCs) stimulated with LPS. 

Also, the MEK inhibitor PD98059 prevented TNF secretion 

in response to LPS [16]. A closer analysis has shown that IKK 

activation promotes the phosphorylation of membrane 

SNARE proteins involved in cytokine secretion, such as 

SNAP-23[17], but the specific role of ERK is still unknown 

(Figure 1).  

In vivo, there are several mouse models used to study the 

innate response after stimulation of the TLR-4 receptors in 

MC, among them, the cecal ligation and puncture (CLP) 

model involves tying a section of intestine (caecum) with its 

posterior perforation. This allows resident bacteria to invade 

the entire peritoneal cavity initiating the systemic response to 

sepsis [18]. Other models are used to investigate the response 

mounted only to endotoxin and they consist on the direct 

injection of purified LPS to peritoneal cavity [19, 20]. Using 

those models in WT and MC-deficient (Kit Wv/Wv and Kit 
Wsh/Wsh) mice, it has been shown that resident MCs are 

responsible for the early production of TNF during the first 

two hours after TLR-4 stimulation [19, 21, 22].  

In vitro models of TLR4-dependent activation of MC 

consist in the direct stimulation of BMMCs or MC cell lines 

(such as rat RBL 2H3 cells or human LAD-2 cell line) with 

TLR4 ligands. Using those cellular models and accordingly 

to the well-documented mast cell heterogeneity, it has been 

shown that MC response to LPS depends on cell preparation 

and culture conditions [23-25]. For example, in BMMC, TLR4 

stimulation with LPS (500 ng/ml) induces secretion of TNF 

at short times (1 to 4 hours) [24,16] whereas RBL-2H3 cells it 

takes a long-lasting stimulation (6 to 12 h) with high LPS 

concentrations (1 g/mL) to observe an increase on TNF 

production.  

TLR receptors are activated also after the recognition of 

damage-associated molecular patterns (DAMPs), such as 

heat shock proteins [26], β-defensins, fibronectin, hyaluronic 

Figure 1. Main signaling routes connecting FcRI or TLR4 receptors with cytokine production in MC. Upon 

stimulation of the FcεRI signaling cascade with IgE/Ag complexes, distinct pathways are activated to connect the receptor 
with the production of arachidonic acid (1), secretion of the pre-formed content of granules (2) and de novo synthesis of 
cytokines trough transcription of specific genes and mRNA stabilization (3). After activation of TLR4 receptor, a pathway 
inducing the activation of various transcription factors to produce the synthesis of pro-inflammatory cytokines is turned on 
(3), but selective exocytosis of granule content (such as TNF) is also observed (4).  
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acid, β-amyloid peptide [24], and fatty acids [28]. Recent 

evidence indicates that in chronic-degenerative diseases, 

those agents could be responsible for TLR receptors 

triggering on MC surface. For example, in the case of 

rheumatoid arthritis, local and long-lasting inflammatory 

reactions eventually lead to destruction of cartilage and bone. 

In this process, the damage sinovium produce DAMPs such 

as fibronectin, which activate MC similarly to what occurs 

with LPS. MC, in turn, contribute to the increased 

inflammatory response in the damaged tissue [29]. 

Mediators of stress and its effects on the activation of 

mast cells 

HPA activation induces the production of CRH in the 

paraventircular nuclei of the hypothalamus. This hormone 

travels through the pituitary portal and promotes ACTH 

production in the anterior pituitary. On the other hand, in the 

adrenal cortex promotes the production of glucocorticoids. 

Some of the secreted mediators during activation of the HPA 

axis may per se induce cytokine release from MC but also 

can modify their response to stimulation of TLR and FcRI 

receptors by a mechanism that has not been fully described 

(Figures 2 and 3).  

Corticotropin-releasing hormone (CRH) 

CRH is a peptide synthesized in response to stress in 

paraventricular nucleus of the hypothalamus. However, at the 

periphery, other cell types such as MC are able to synthesize 

it [30]. CRH acts through its G-protein-coupled receptors 

(GPCRs), CRH-R1 and CRH-R2. When activated, their 

signaling cascades increase intracellular concentrations of 

cAMP by action of Adenylyl cyclase (AC), and, eventually, 

activate protein kinase A (PKA) [31]. 

The immobilization stress model has been widely used to 

generate acute stress in rats and mice. This model consists on 

Figure 2. Modulation of FcRI-dependent responses by stress hormones in MC. IgE/Ag-induced degranulation and 

cytokine synthesis is positively affected by neurotensin receptors (NT-R) by a mechanism depending on calcium 
mobilization and activation of specific transcription factors. Those pro-inflammatory signals are negatively controlled by the 

activation of 2-adrenergic (AR-2) receptors and cytoplasmic or membrane glucocorticoid receptors (c and m GCR). 

AR-2 and GCR also interfere with the activation of calcium channels and enzymes responsible for the production of 
lipid-derived inflammatory mediators (see text for details).  
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the introduction of the animal into a cylinder designed 

accordingly to prevent movement of scape of the 

experimental subject. Under those conditions, it has been 

shown that stress induces intracranial and skin degranulation 

of MC in the rat. MC degranulation was not observable when 

animals were pre-treated with and anti-CRH serum prior to 

immobilization [7, 9]. 

The presence of CRH-1 and CRH-2 receptors has been 

reported in a human leukemia mast cell line (HMC-1). 

Activation of these cells with CRH selectively promoted the 

secretion of VEGF, but not tryptase, histamine or certain 

other cytokines. The increased secretion of VEGF was 

associated with the activation of AC and PKA, since VEGF 

secretion was increased with froskolin and inhibited with 

SQ22536 (an inhibitor of AC) or the CRH-1 antagonist 

alarmin [32]. CRH acting on the CRH-R1 induces 

phosphorylation of P-38 MAPK, but not ERK or JNK in MC 
[33]. Similar studies, performed with the human mast cell line 

LAD-2, have found that secretion of CRH enhances VEGF 

production induced after activation of FcεRI [34].  

Glucocorticoids  

Glucocorticoids are the best-studied mediators released 

after stress responses. Their actions on the immune response 

have been extensively characterized and generally lead to the 

suppression of inflammation, reason by which they are wide 

prescribed for the treatment of multiple diseases such as 

asthma and distinct types of allergies.  

Glucocorticoids have anti-inflammatory effect by acting 

on their receptors that, without any stimulus, are localized in 

the cytoplasm (cGCR) forming complexes with chaperone 

proteins such as the 90 kDa heat shock protein (Hsp90). 

After binding of the ligand, the complex dissociates and 

cGCR protein is transported to cell nucleus where it binds to 

hormone response elements on DNA, inducing the 

transcription of genes that interfere with the activation of the 

transcription factor NFκB such as IκB [35-37]. In MC isolated 

from dexamethasone-treated animals or in 

dexamethasone-treated BMMCs [38, 40] a reduction on the 

secretion of preformed mediators such as -hexosaminidase, 

Figure 3. Modulation of TLR4-dependent responses by adrenergic and nicotinic 7 acetylcholine (nAchR7) 
receptors. In murine peritoneal cavity, MC-dependent production of TNF after LPS addition in is negatively controlled by 
adrenaline (secreted by adrenal glands or by peripheral nerve terminals) and by acetylcholine released after swim stress. 

Molecular mechanisms behind this inhibition remain to be described (see text for details).  
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serotonin and certain arachidonic acid derivatives was 

observed [40]. The molecular mechanism behind the blockage 

on the secretion of pre-formed mediators in MC has not been 

fully described but some experiments in RBL-2H3 cells 

indicate that a pre-incubation with corticosterone causes an 

inhibition on the rise on intracellular calcium current [Ca2+]I, 

which is necessary for histamine release [41].  

We have reported that the inhibitory effects of swim stress 

on MC-dependent, LPS-induced TNF secretion in peritoneal 

cavity were not prevented by pretreatment with mifepristone 

(a commonly used antagonist of GR) despite the important 

increase on corticosterone plasma levels observed [6]. Our 

results suggest that GR exerts a marginal control on TNF 

secretion stimulated by TLR4 receptors in MC.  

Finally, membrane glucocorticoid receptors (mGCR) have 

been found in a number of immune cells and their activation 

causes changes in basic properties of plasma membrane, 

affecting intracellular concentrations of Ca2+, ATP and 

cAMP [42, 43]. Also, changes on membrane localization of 

mGCR were detected in RBL-2H3 cells after IgE/antigen 

stimulation [44]. 

Catecholamine  

During the stress response, adrenaline and noradrenaline 

are secreted by chromaffin cells located in the adrenal 

medulla by a process dependent on acetylcholine release. 

Those catecholamines activate with different affinities three 

subtypes of G-protein coupled receptors known as 

adrenoceptors α1, α2 and β (1, 2, 3). β2-adrenergic receptor is 

positively coupled to Gs protein and promotes the activation 

of AC, resulting in the intracellular increase of cAMP levels. 

MC express this receptor subtype and has been widely 

studied because its activation modulates the main 

inflammatory reaction associated to asthma [45, 46]. In an 

study conducted in 2001 by Graveskaya et al [47] peritoneal 

MC purified from rats exposed to cold stress (inmersion of 

animals for 5 min in a water bath at 4°C) were stimulated 

with the calcium ionophore A23187 or the secretagogue 

compound 48/80. Authors found that stress inhibited 

A23187-induced histamine release and same effect was 

observed when, instead of exposing rats to stress, were 

administered with epinephrine. Other in vivo studies have 

reported that treatment with isoproterenol and clembuterol 

(two different β-adrenergic agonists) decreases the skin 

anaphylactic reaction and the IgE/Ag-induced peritoneal 

histamine secretion [48]. On the other hand, studies in MC 

isolated from lung or intestine reported a decrease in the 

secretion of histamine, leukotrienes and prostaglandins when 

cells were pre-incubated with β-adrenergic agonists [46, 48-51].  

Some molecular events have been proposed to explain the 

inhibitory effects that AR-β2 stimulation exerts on the FcεRI 

signaling system. It is known, for example, that an increase 

on cAMP is required for the phenomenon, since incubation 

with forskolin mimics the inhibitory effects of β-adrenergic 

agonists [52]. Also, it has been shown that the adrenergic 

inhibition is prevented when cells are simultaneously 

incubated with cholera toxin, experiment that confirms the 

participation of Gs. It has also been reported that the β2-AR 

agonist salbutamol inhibits calcium currents evoked by 

FcεRI triggering in an event that involves the blockage of 

potassium channels activity (iKCa1) necessary for mast cells 

degranulation [53]. 

Adrenalectomy importantly increased basal and 

LPS-triggered levels of TNF in the peritoneal cavity of mice, 

an effect also observed after pharmacological lesion of the 

noradrenergic system with the specific neurotoxin DSP-4. 

However, any of those manipulations altered the deletereous 

effects of swim stress [6], suggesting that catecholamines 

maintain an inhibitory tone on the peritoneal amount of TNF 

but do not alter the acute effects of stress on that parameter.  

Neurotensin  

Neurotensin (NT) is a peptide secreted at nerve terminals 

in response to tissue injury or pain. Acting on its G-coupled 

receptor (NT-R), this hormone directly activates MC and 

induces the secretion of β-hexosaminidase and histamine and 

enhances the response to IgE/Ag [54, 55]. NT also increases the 

expression of VEGF mRNA and CRH, phenomena related to 

the increase in intracellular Ca2+ and the activation of the 

transcription factor NFκB [9]. Elevated levels of NT have 

been found in serum of patients of psoriasis, phenomenon 

that may explain why some psoriasis patients worsening 

when subjected to stress [56]. In addition, it has been reported 

that acute restraint stress increases cardiac degranulation 

mast cells and that the effect is blocked when the animals are 

pre-administered with an antagonist to NT-R [57, 58]. This 

phenomenon could be relevant in the development of chronic 

cardiovascular diseases. 

Acetylcholine 

During the stress response, cholinergic pathways 

innervating diverse regions of the limbic system are activated 
[59-61]. Acetylcholine causes the release of catecholamines in 

the adrenal medulla and acts directly on their muscarinic and 

nicotinic receptors located on the plasma membrane of many 

cells of the immune system, thereby modulating 

inflammatory responses. The mechanisms by which 

acetylcholine modulates inflammation have been widely 

described over the past decades generating the discovery of 
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an inhibitory pathway known as the cholinergic 

anti-inflammatory reflex. Cholinergic anti-inflammatory 

reflex is composed by a set of interactions that take place 

between the immune cells and nerve terminals. When 

inflammation starts in certain location, cytokines and 

mediators secreted by immune cells activate its specific 

receptors on vagal afferent nerve terminals. This signal is 

integrated into the CNS, in the nucleus of the solitary tract 

and the hypothalamus, causing that the efferent vagal 

terminals of the celiac ganglion secrete acetylcholine that 

promotes secretion of catecholamines. Released 

catecholamines act on -adrenergic receptors in resident T 

cells in the spleen. These cells produce and release 

acetylcholine that inhibits the production of 

pro-inflammatory cytokines to activate the receptors 

nAchRα7 on adjacent spleen macrophages [62]. 

The inhibitory downstream events triggered by the 

activation of nAchRα7 receptors have been described 

primarily in macrophages, however, some studies have also 

been made in other cell types such as mast cells and 

microglia [63, 65]. In general, it is known that nAchRα7 

activation induces recruitment of molecules such JAK and 

STAT, which inhibit the activity of the transcription factor 

NFκB [66]. In rodent models of endotoxemia it has been seen 

that electrical stimulation of the vagus nerve attenuates 

proinflammatory cytokine concentrations in serum and also 

prevents the development of endotoxic shock [67]. 

The anti-inflammatory effects of acetylcholine have been 

demonstrated in other in vivo models of inflammation. In our 

study, we observed that the inhibitory effect evoked by stress 

can be prevented by treating mice with the nicotinic 

antagonist mecamylamine [6]. These results suggest that 

acetylcholine released in response to stress activate nicotinic 

receptors on MC and inhibit MC responses to LPS. In vitro 

studies have demonstrated the presence of nicotinic receptors 

in BMMCs [68-69]. In RBL-2H3 cells, the effect of nicotinic 

agonists such as nicotine and GTS-21 has been evaluated and 

results indicate that the nicotinic agonist can inhibit the 

production of leukotrienes, β-hexosaminidase and histamine 

induced by FcεRI activation [70]. Despite the importance that 

PAMP and DAMP-induced cytokine synthesis by MC has on 

the development of chronic inflammatory conditions, the 

molecular mechanisms of inhibition mediated by stress are 

still far from being described (Figure 3).   

Conclusions 

Stress mediators induce important modifications to MC 

responses to stimuli from the innate and the adaptive immune 

system. Some of those mediators show a positive effect on 

the response triggered by the FcRI, such as CRH and 

substance P, while other exert negative effects, such as 

glucocorticoids, catecholamines and acetylcholine. In 

contrast, the existing information about the effects of stress 

mediators on MC-dependent cytokine synthesis after 

stimulation of TLR receptors is scarce. Our recent findings 

reporting the transient inhibitory role of stress on the 

TLR4-dependent cytokine production in MC through the 

activation of the anti-inflammatory reflex open new avenues 

in the identification of therapeutic targets for chronic- 

degenerative diseases in which long-term production of 

cytokines associated to MC activation is related with 

progressive tissue damage.  
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