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KSHV episomes: rugged individualists on the factory floor 
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We have recently developed tools to study Kaposi’s sarcoma-associated virus (KSHV) reactivation at the 
single-episome level. Using immunofluorescent labeling of latent nuclear antigen (LANA) protein to localize viral 
episomes, combined with fluorescence in situ RNA hybridization (RNA-FISH) of an intron region of immediate 
early transcripts, we have visualized active transcription of viral genomes in infected cells. At this level, we 
observed that not all episomes within a single cell were uniformly transcribed following reactivation stimuli. 
However, those episomes that were transcribed, formed large aggregates containing a significant fraction of 
cellular RNA polymerase II (RNAPII), foci consistent with previously described viral transcriptional factories. 
This focal assembly of RNAPII on viral episomes was accompanied by an overall decrease in the pool of cellular 
RNAPII. Additionally, the viral transcriptional factories localized with replicating viral genomic DNAs. This 
co-localization suggests that KSHV may assemble an “all-in-one” workroom for both gene transcription and 
DNA replication. While previous studies have reported on the variable response of individual KSHV infected 
cells or episomes derived from a population during reactivation, our results expose this variation further by 
demonstrating heterogeneity in the response of individual KSHV episomes within a single reactivating cell. 
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KSHV is the eighth member of the human herpesvirus 
family identified in 1994 [1] and is etiologically linked to the 
development of Kaposi’s sarcoma (KS), an 
angioproliferative and inflammatory lesion of the 
endothelium. KSHV is also strongly associated with two 
human lymphoproliferative diseases, primary effusion 
lymphoma (PEL) and multicentric Castleman’s disease [2, 3]. 
Similar to all herpesviruses, the KSHV life cycle consists of 
two phases, known as latency and lytic replication. In 
latency, the viral genome persists in the host as nuclear 
episomes, and its expression is largely silenced except for a 
few genes [4, 5]. The KSHV lytic replication phase is initiated 

by the expression of a single viral protein, K-Rta. K-Rta is 
both necessary and sufficient to induce lytic reactivation of 
the latent KSHV genome [6-9]. K-Rta is classified as an 
immediate early gene and its coding sequence is separated 
into two exons [10, 11]. Various K-Rta responsive promoters 
have been identified in vitro and in vivo [10, 12, 13] thus 
expression of K-Rta triggers a cascade of viral gene 
expression. Lytic reactivation can also be induced 
experimentally by histone deacetylase inhibitors or phorbol 
esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA) 
[14] and this pathway is accompanied by changes in viral
chromatin structure [15, 16].
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Previous single cell analysis of cells undergoing 
reactivation have noted that only 20% of K-Rta positive cells 
also expressed the late gene K8.1 suggesting the existence of 
additional incentive factors required for K-Rta positive cells 
to advance through complete reactivation [17]. Although 
K-Rta expression drives lytic reactivation, it has been 
considered an inefficient reactivating lever, subject to 
positive and negative regulation by viral and cellular factors 
[18]. 

The heterogeneous response of latent KSHV infected cells 
to reactivation stimuli has also been documented at the 
individual episome level by Darst et al. 2013 [19]. 
Methylation accessibility probing for individual template 
(MAPit) single molecule footprinting approaches were used 
to characterize locus-specific chromatin architectural 
diversity. By assessing the accessibility of a given locus to a 
DNA methyltransferase enzyme in combination with 
bisulfite sequencing, changes in viral chromatin structure in 
response to TPA or Rta transgene expression were evaluated. 
Their results estimated that only a subset of viral episomes 
(~10% of the total pool) can transcribe Rta following a TPA 
reactivation stimulus. The results also indicated that an open 
chromatin structure is a prerequisite for an episomal response 
to the inducer of lytic transcription. However, this study did 
not distinguish as to whether all episomes in 10% of cell 
population possessed an open chromatin structure versus 
whether 10% of the episomes within a cell can be accessed 
by RNAPII.  

Against this background of reactivation heterogeneity, we 
wished to visualize the response of individual episomes 
during reactivation within a single cell. We utilized an 
RNA-FISH approach to visualize viral transcripts in 
combination with LANA immune staining to mark the 
location of the viral episomes in infected cells. Our studies 
utilized a PEL cell line (BCBL-1) or a derivative containing 
a doxycycline-inducible K-Rta expression cassette [8]. Using 
these models we have previously reported that LANA rapidly 
dissociates from the unique region of the KSHV genome 
during reactivation, however, in the same report we also 
showed that LANA remains tightly bound to the KSHV 
terminal repeat (TR) region during this time [20]; this 
LANA-TR interaction formed the basis to mark viral 
episomes. The use of RNA-FISH in this regard was first 
described in a study of cellular gene regulation, in which 
target transcripts were marked near the transcribing genomic 
locus in situ by generating probes specific to intronic regions 
[21, 22]. Using this same approach, we designed a panel of 
RNA-FISH probes for the K-Rta intron region allowing us to 
specifically tag pre-mRNAs immediately after transcription 
from viral DNA. KSHV reactivation was induced for 24h by 
incubation with TPA and the cells were fixed, permeabilized 

and subjected to immunostaining (LANA, localizes 
episomes) followed by RNA-FISH (localizes K-Rta intron, 
viral transcription sites). Using this combination, we 
successfully obtained the first images of reactivating KSHV 
episomes in situ. The images revealed that not all of the 
episomes in a single cell react uniformly to TPA stimulation. 
Three-dimensional (3D) imaging showed that some KSHV 
episomes were adjacent to transcripts, suggesting that these 
episomes were the likely origin of the RNAs, whereas other 
episomes were devoid of a transcript signal. The 
intra-nuclear variation in episomal participation in 
reactivation was striking. Reactivating cells could be found 
with high levels of Rta transcription involving multiple 
episomes, whereas Rta message production in other cells 
involved one or a few viral genomes, however in all cases, 
there were always episomes present in reactivating nuclei 
without adjacent transcription detected, suggesting these 
episomes remained latent. 

By combining K-Rta intron RNA-FISH with differing 
antibodies, the relationship between K-Rta transcription and 
additional protein targets of interest could be interrogated. 
For example, we reasoned that K-Rta RNA, which has 
immediately been transcribed from the viral genome, should 
be in close proximity with RNAPII. Accordingly, we stained 
for RNAPII and probed for K-Rta RNA intron-containing 
transcripts by RNA-FISH. The results showed 
co-localization of K-Rta RNA with cellular RNAPII with 
many cells showing an aggregated/focal pattern of RNAPII 
expression. The results also showed a significantly lower 
overall RNAPII signal intensity in reactivating cells 
compared to non-reactivating cells. The decrease in RNAPII 
detected by immune-FISH was confirmed by western blot 
analysis probing lysates collected at 0-72 hour 
post-reactivation, while viral protein expression increased 
during this time frame. The RNAPII protein decrease could 
be partially rescued by MG132 or bortezomib treatment of 
reactivating cells implying that RNAPII degradation was at 
least in part mediated by the proteasome. The RNAPII data 
suggested that viral induced aggregation in the context of a 
decreased overall RNAPII intensity was a reflection of a 
biased shift of RNAPII to viral factories to transcribe viral 
genes at the expense of cellular gene transcription. When we 
probed several cellular and viral genes for expression levels 
we found that this was the case. Decreased expression of 
cellular GAPDH (glyceraldehyde 3-phosphate 
dehydrogenase), ACTB (beta-actin), and RBP1 (RNAPII 
subunit) was observed, while expression of viral genes such 
as K-Rta, PAN, K8.1, K-bZIP and LANA increased. The 
RT-qPCR results were consistent with RNAPII occupancy at 
these gene promoters, determined by RNAPII chromatin 
immunoprecipitation (ChIP), with occupancy at viral and 
cellular promoters increased and decreased, respectively. 
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Additional multiplex immune-FISH images localized 
RNAPII, LANA, and K-Rta transcription to overlapping sites 
within the nucleus. Taken together, the immune-FISH, gene 
expression, RNAPII ChIP and KSHV chromosome capture 
(Capture-C) data (Campbell et al., unpublished) suggest that 
during reactivation, (a) KSHV forms an active chromatin 
hub(s) (ACHs; [23]) to regulate viral gene expression, (b) 

containing a large fraction of the cellular RNAPII pool to (c) 
bias transcription in favor of viral genes at (d) the expense of 
cellular gene expression. Finally, TR fluorescence in situ 
DNA hybridization in conjunction with RNAPII staining 
detected an overlap between these molecules. RNAPII 
recruitment to sites of viral DNA replication suggests that 
KSHV lytic replication induces the formation of integrated 

Figure 1. Individualized episomal response to reactivation signals. A latent B cell containing multiple KSHV episomes (green circles) 
and normal levels of RNAPII (red ovals) is shown in the top panel. Cellular mRNAs are transcribed by RNAPII and nascent RNAs are 
depicted. A lytic reactivating B cell is shown in the bottom panel.  Reactivation is induced by TPA treatment and K-Rta expression (arrow). 
Focal aggregation of RNAPII (red ovals) at viral transcriptional factories and expression of viral RNAs are shown. Newly replicated viral 
DNA is depicted as red lines co-localized at the viral transcription factory. An overall decrease in cellular RNAPII is reflected by the gradient 
of orange shading (darker orange, more RNAPII) between the latent infected cell (top panel) and the lytic reactivating cell (bottom panel). 
Released viral particles are shown with viral DNA (black line). 
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structures capable of both viral gene expression and lytic 
DNA replication (Figure 1). 

One interesting question to arise from our study is how 
such a significant fraction of RNAPII is mobilized to viral 
episomes. One possibility is that this event is associated with 
the extremely high expression of the viral nuclear noncoding 
RNA, PAN. Although not directly assessed in our study, we 
speculate that one function of PAN may be to trap cellular 
RNAPII on the KSHV genome through DNA-RNA or 
RNA-protein interactions. PAN has been reported to interact 
with several viral and cellular proteins [24-27], and its 
communication network is probably incompletely defined. In 
addition, it is also possible that the process of transcription 
itself may contribute to PAN function through an 
enhancer-RNA-like activity to facilitate reactivation [28, 29]. 
However, previous nuclear PAN knock-down studies 
indicate that high levels of PAN RNA is the critical moiety 
for wild-type levels of virus production [27, 30], suggesting that 
partner interactions are an important basis of PAN function. 

In summary, our recent publication 31 documents for the 
first time reactivating KSHV episomes at the single-episome 
level. Our findings demonstrate the individualistic pattern of 
behavior among episomes within a single nucleus containing 
up to 80 identical copies of the KSHV genome [32]. During 
the course of reactivation within the same nuclear space, 
some episomes reactivate, others remain quiescent. However, 
the individual responding episomes do succeed in the 
creation of an environment for maximal viral replication by 
assembly of all-inclusive factories to optimize viral 
transcription, decrease cellular transcription, and to 
proximally partition the events of viral transcription and viral 
DNA replication (Figure 1).   

The reasons for this fascinating conduct are unknown but 
likely involve viral chromatin compaction, epigenetic 
modifications [15, 16, 19] and interactions with host factors 
[33-37]. Consistent with our results, previous studies have 
vividly demonstrated that only a limited number of 
herpesviral genomes give rise to progeny virus in studies 
using a Brainbow cassette to trace the lineage of incoming 
viral herpesviral genomes during de novo lytic infections [38, 

39]. Although the mechanisms involved in these studies are 
likely different than we reported here, the theme of 
individual lytic responses among a population of herpesviral 
genomes is evident. 
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