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The membrane-bound transcription factors, SREBPs (sterol regulatory element-binding proteins), play a central 
role in regulating lipid metabolism. The transcriptional activation of SREBPs requires the key protein SCAP 
(SREBP-cleavage activating protein) to translocate their precursors from the endoplasmic reticulum to the Golgi 
for subsequent proteolytic activation, a process tightly regulated by a cholesterol-mediated negative feedback 
loop. Our previous work showed that the SCAP/SREBP-1 pathway is significantly upregulated in human 
glioblastoma (GBM), the most deadly brain cancer, and that glucose-mediated N-glycosylation of SCAP is a 
prerequisite step for SCAP/SREBP trafficking. More recently, we demonstrated that microRNA-29 (miR-29) 
mediates a previously unrecognized negative feedback loop in SCAP/SREBP-1 signaling to control lipid 
metabolism. We found that SREBP-1, functioning as a transcription factor, promotes the expression of the 
miR-29 family members, miR-29a, -29b and -29c. In turn, the miR-29 isoforms reversely repress the expression 
of SCAP and SREBP-1. Moreover, treatment with miR-29 mimics effectively suppressed GBM tumor growth by 
inhibiting SCAP/SREBP-1 and de novo lipid synthesis. These findings, recently published in Cell Reports, 
strongly suggest that delivery of miR-29 in vivo may be a promising approach to treat cancer and metabolic 
diseases by suppressing SCAP/SREBP-1-regulated lipid metabolism. 
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Lipids are essential components of the cells, particularly 
phospholipids and cholesterol, constituting the basic 
structure of cell membrane system [1, 2]. Furthermore, lipids 
also serve as important signaling molecules, regulating 
various cellular functions [3]. Dysregulation of lipid 
metabolism contributes to the pathogenesis of various 
metabolic syndromes, i.e., atherosclerosis, steatosis, obesity 
and diabetes [4]. Therefore, interfering with the dysregulated 
lipid metabolism in metabolic diseases has been a long-term 

focus of basic research and pharmacological development [4, 

5]. Nevertheless, the still incomplete understanding of the 
molecular mechanisms underlying the alteration of lipid 
metabolism significantly hinders progress.  

The family of basic helix-loop-helix transcription factors, 
SREBPs (sterol regulatory element-binding proteins), plays a 
central role in lipid metabolism by controlling the de novo 
synthesis of fatty acids, phospholipids, cholesterol, and also 
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cholesterol uptake, which were initially discovered by Nobel 
Laureates Brown & Goldstein around 20 years ago [3-7]. 
SREBPs are comprised of three members, SREBP-1a, -1c 
and -2. SREBP-1a and -1c that are encoded by the same gene 
using different transcriptional start sites, resulting in a 
distinct exon 1 and around a 20 amino acid longer 
N-terminus in SREBP-1a than in -1c [8, 9]. SREBP-2 is 
encoded from a different gene and mainly controls 
cholesterol synthesis and uptake while SREBP-1c regulates 
fatty acid synthesis. In contrast, SREBP-1a is able to execute 
all three functions, i.e., fatty acid synthesis, cholesterol 
synthesis and cholesterol uptake [6, 10-14].  

Brown & Goldstein put forth an elegant model of the 
regulation of SREBP activation through a 
cholesterol-mediated negative feedback loop (Fig. 1) [4, 6]. 

After translation, SREBPs immediately bind to the key 
protein, SCAP (SREBP-cleavage activating protein), to form 
a complex. SCAP further binds to Insig (insulin-induced 
gene protein), an endoplasmic reticulum (ER)-anchored 
protein, resulting in the formation of the Insig/SCAP/SREBP 
complex, which is retained in the ER by high levels of 
cholesterol [15-17]. When cholesterol levels decrease, SCAP 
dissociates from Insig, resulting in the degradation of Insig. 
SCAP then interacts with COPII proteins that translocate the 
SCAP/SREBP complex from the ER to the Golgi, where 
SREBPs are sequentially cleaved by site-1 and site-2 
proteinases to release their transcriptionally active 
N-terminal fragments that enter into the nucleus to promote 
the transcription of lipogenic genes including Insig-1 [4, 6, 10, 

11, 17, 18]. Consequently, the levels of cholesterol and Insig are 
restored to bind again to the SCAP/SREBP complex, which 

Figure 1. miR-29 mediates a novel negative feedback loop in SCAP/SREBP-1 signaling and regulates lipid 
metabolism. Our previous study showed that glucose-mediated SCAP N-glycosylation enables SCAP/SREBP-1 trafficking 
from the ER to the Golgi for subsequent proteolytic activation. Furthermore, EGFR signaling enhances glucose uptake, 
thereby increasing SCAP N-glycosylation and SREBP-1 activation to promote tumor growth [23-25]. High levels of cholesterol 
increase the association of Insig and SCAP, resulting in the retention of the complex in the ER [6]. Our newly discovered 
negative feedback loop shows that SREBP-1 transcriptionally activates the expression of pri-miR-29a/b1 and 
pri-miR-29b2/c, which generate the mature miR-29a, -29b and 29c. In turn, miR-29 reversely inhibits the expression of 
SCAP and SREBP-1 by binding to their 3’-UTRs, resulting in the downregulation of lipogenesis genes [55]. SRE, sterol 
regulatory element (SREBP-binding motif present in the promoters of SREBP target genes). S1P, site 1 protease. S2P, site 
2 protease. 
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is then retained in the ER, resulting in the reduction of lipid 
synthesis and uptake (Fig. 1) [19-22].   

To explore whether other factors are critical for 
SCAP/SREBP trafficking, we investigated the role of 
glucose-mediated N-glycosylation modification of the SCAP 
protein, and showed that it was a prerequisite step for 
SCAP/SREBP trafficking and activation upon cholesterol 
reduction [23-25]. We found that N-glycosylation stabilizes 
SCAP and reduces its association with Insig-1, allowing 
SCAP/SREBP movement from the ER to the Golgi (Fig. 1). 
Our study demonstrated that glucose is an essential activator 
of SCAP/SREBP trafficking, while cholesterol functions as a 
key inhibitor of this process [23-25].  

Recent evidence shows that lipid metabolism is largely 
altered in cancer cells [26-33]. Our previous studies were the 
first to demonstrate that lipid metabolism is reprogrammed in 
glioblastoma (GBM) [29, 33-36], the most common primary 
brain tumor and one of the most lethal of all cancers [36-41]. 
Our data show that GBM tumors bearing amplification of the 
tyrosine kinase receptor, EGFR, or expressing the 
constitutively active EGFRvIII, which lacks a portion of the 
extracellular ligand binding domain due to the deletion of 
exons 2-7 of the EGFR gene [39, 42, 43], were greatly dependent 
on SREBP-1-mediated lipogenesis and cholesterol uptake for 
their rapid growth [34, 36, 44, 45]. We found that 
EGFR/EGFRvIII activates SREBP-1 via PI3K/Akt signaling 
to promote lipid synthesis [6, 10, 36], and that EGFR signaling 
enhances glucose uptake to promote SCAP N-glycosylation 
and SCAP/SREBP-1 trafficking [23-25].  

SREBP proteins were recently reported to be upregulated 
in various cancers and now emerge as promising molecular 
targets for cancer treatment [33, 44, 46]. Nevertheless, the 
pharmacological development to directly target 
SCAP/SREBP has not been successful so far, and alternative 
means to block this pathway are needed. Thus, we turned our 
attention to microRNAs (miRNAs), small non-coding RNAs 
that greatly affect the expression and translation of a large 
number of genes [47,48]. miRNAs are involved in many 
biological processes, i.e., cell growth, development, 
differentiation, survival, etc. [47-49]. Moreover, miRNAs have 
been shown to be involved in tumorigenesis where they 
function as tumor suppressors or oncomiRs [50], and to 
regulate lipid metabolism [51-53].  

We identified miRNA-29 as a critical mediator of a novel 
negative feedback loop in the regulation of SCAP/SREBP-1 
signaling [54], providing a promising new approach to target 
GBM. The miRNA-29 family includes 3 members, miR-29a, 
-29b and -29c, which share the same seed sequence. miR-29b

is encoded by pri-miR-29b1 and pri-miR-29b2, which are 
located on different chromosomes but generate the same 
mature miR-29b. Interestingly, pri-miR-29a and 
pri-miR-29b1 are both located on chromosome 7 and share 
the same promoter. Similarly, pri-miR-29b2 and pri-miR-29c 
are located on chromosome 1 and are co-transcribed by the 
same promoter [55,56].  

In our study, we found that expression of all 3 mature 
miR-29s was positively correlated with SREBP-1 gene 
expression in samples from a large cohort of GBM patients 
with altered EGFR (amplification or mutation) [55]. 
Furthermore, activating EGFR/PI3K/Akt signaling via EGF 
stimulation significantly enhanced the expression of all 3 
miR-29s in GBM cell lines. Interestingly, both SREBP-1a 
and -1c directly bind to the promoter region of miR-29a/b1 
and miR-29b2/c, activating their expression and generating 
mature miRNA-29a, -29b and -29c. We also showed that the 
3’-untranslated region (3’-UTR) of SREBP-1 has binding 
sites for miR-29, and demonstrated that miR-29a, -29b and 
-29c inhibited the mRNA and protein levels of SREBP-1 by
directly binding to these complementary sites. Importantly,
our intracranial GBM xenograft studies show that miR-29
treatment significantly suppressed tumor growth via
inhibition of SCAP/SREBP-1 and lipid synthesis [54].

miR-29 has been shown to be transcriptionally inhibited 
by transcription factors such as c-Myc, TGF-β and NF-κB in 
cancer cells [57-59]. Our study was the first to show that 
miR-29 expression is controlled by SREBP-1, and that 
miR-29 is directly involved in the regulation of lipid 
metabolism. This newly discovered negative feedback loop 
regulation of SCAP/SREBP-1 by miR-29 further 
demonstrates that lipid homeostasis is elegantly regulated by 
multi-layer of mechanisms in addition to cholesterol and 
glucose regulation [23-25, 54]. Considering the simple synthesis 
and easy delivery of mature microRNAs, miR-29 treatment 
may be a feasible and promising approach to treat cancers 
and other metabolic diseases.   
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