The cycling peroxisomal targeting signal type 1 - receptor Pex5p: reaching the circle’s end with ubiquitin

Harald W Platta


Peroxisomes are single-membrane bound organelles that are found nearly ubiquitiously in eukaryotic cells. Their main task is the breakdown of fatty acids by beta-oxidation and the detoxification of hydrogen peroxide. However, these so called “multi-purpose organelles” also display several other metabolic functions, which can differ between species, tissues or growth conditions of the cells. This high plasticity of peroxisomal functions is enabled by an adjustment of the protein composition, which in turn is regulated by the dynamically operating protein import receptors. Subsequent to their synthesis on free ribosomes in the cytosol, peroxisomal matrix proteins are recognizes by import receptors by means of a peroxisomal targeting sequence (PTS). Most peroxisomal matrix proteins harbor a PTS-type 1 (PTS1) signal, which is bound by the PTS1-receptor Pex5p in the cytosol. The PTS1-receptor/cargo-complex reaches a docking complex at the peroxisome, where Pex5p is thought to become a building block of a transiently opened translocation pore. After the translocation of the folded cargo proteins over the membrane into the peroxisomal matrix, Pex5p is exported back to the cytosol for further rounds of matrix protein import. This dislocation step comprises the only energy-consuming reactions of the entire receptor cycle, because Pex5p has to be monoubiquitinated at a conserved cysteine before it can be extracted from the membrane by the AAA-type ATPases Pex1p and Pex6p. In case this recycling pathway is hampered, Pex5p gets polyubiquitinated on lysine residues and degraded by the proteasome. This review focuses on the PTS1-receptor Pex5p and discusses recent data and concepts regarding the molecular mechanism of cargo recognition, pore formation, cargo release and ubiquitination-dependent export and highlights the clinical relevance of Pex5p in health and disease.

Full Text:



Novikoff AB, Novikoff PM, Davis C, Quintana N. Studies on microperoxisomes. V. Are microperoxisomes ubiquitous in mammalian cells? J Histochem Cytochem 1973; 21: 737-755.

Schlüter A, Real-Chicharro A, Gabaldón T, Sánchez-Jiménez F, Pujol A. PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res 2010; 38(Database issue)

Pieuchot L, Jedd G. Peroxisome assembly and functional diversity in eukaryotic microorganisms. Annu Rev Microbiol 2012; 66: 237-263.

Wanders RJ, Waterham HR. Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 2006; 75: 295-332.

Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S et al. Plant peroxisomes: biogenesis and function. Plant Cell 2012; 24: 2279-2303.

Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R et al. Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Micobiol 2010; 76: 5702-5709.

Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM et al. A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 1996; 135: 1-3.

Smith JJ, Aitchison JD. Peroxisomes take shape. Nat Rev Mol Cell Biol. 2013; 14: 803-817.

Opaliński L, Veenhuis M, van der Klei IJ. Peroxisomes: membrane events accompanying peroxisome proliferation. Int J Biochem Cell Biol 2011; 43: 847-851.

Nagotu S, Veenhuis M, van der Klei IJ. Divide et imera: the dictum of peroxisomes. Traffic 2010; 11: 175-184.

Fagarasanu A, Mast FD, Knoblach B, Rachubinski RA. Molecular mechanism of organelle inheritance: lessons from peroxisomes in yeast. Nat Rev Mol Cell Biol 2010; 11: 644-654.

Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4: 261.

Nagotu S, Kalel VC, Erdmann R, Platta HW. Molecular basis of peroxisomal biogenesis disorders caused by defects in peroxisomal matrix protein import. Biochim Biophys Acta

; 1822: 1326-1336.

Poll-The BT, Gärtner J. Clinical diagnosis, biochemical findings and MRI spectrum of peroxisomal disorders. Biochim Biophys Acta 2012; 1822: 1421-1429.

Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta 2012; 1822: 1430-1441.

Baes M, Van Veldhoven PP. Mouse models for peroxisome biogenesis defects and β-oxidation enzyme deficiencies. Biochim Biophys Acta 2012; 1822: 1489-1500.

Wanders RJ, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 2006; 1763: 1707-1720.

Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. Biochim Biophys Acta 2006; 1763: 1733-1748.

Carvalho AF, Costa-Rodrigues J, Correia I, Costa Pessoa

J, Faria TQ, Martins CL et al. The N-terminal half of the peroxisomal cycling receptor Pex5p is a natively unfolded domain. J Mol Biol 2006; 356: 864-875.

Kerssen D, Hambruch E, Klaas W, Platta HW, de Kruijff B, Erdmann R et al. Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 2006; 281: 27003-27015.

Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J et al. A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. J Biol Chem 2014; 289: 437-448.

Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y. Peroxisomal Targeting Signal Receptor Pex5p Interacts with Cargoes and Import Machinery Components in a Spatiotemporally Differentiated Manner: Conserved Pex5p WXXXF/Y Motifs Are Critical for Matrix Protein Import. Mol Cell Biol 2002; 22: 1639-1655.

Saidowsky J, Dodt G, Kirchberg K, Wegner A, Nastainczyk W, Kunau WH et al. The Di-aromatic affinity binding sites for the peroxisomal membrane protein PEX14. J Biol Chem 2001; 276: 34524-34529.

Schliebs W, Saidowsky J, Agianian B, Dodt G, Herberg FW, Kunau WH. Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J Biol Chem 1999; 274: 5666-5673.

Madrid KP, Jardim A. Peroxin 5-peroxin 14 association in the protozoan Leishmania donovani involves a novel protein-protein interaction motif. Biochem J 2005; 391: 105-114.

Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70: 1393-1411.

Brocard C, Kragler F, Simon MM, Schuster T, Hartig A. The tetratricopeptide repeat-domain of the Pas10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL. Biochem Biophys Res Commun 1994; 204: 1016-1022.

Gatto GJJ, Geisbrecht BV, Gould SJ, Berg JM. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 2000; 7: 1091-1095.

Szilard RK, Titorenko VI, Veenhuis M, Rachubinski RA. Pay32p of the Yeast Yarrowia lipolytica Is an Intraperoxisomal Component of the Matrix Protein Translocation Machinery. J Cell Biol 1995; 131: 1453-1469.

van der Leij I, van den Berg M, Boot R, Franse MM, Distel B, Tabak HF. Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol 1992; 119: 153-162.

Stanley WA, Filipp FV, Kursula P, Schüller N, Erdmann R, Schliebs W et al. Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Mol Cell 2006; 24: 653-663.

Stanley WA, Pursiainen NV, Garman EF, Juffer AH, Wilmanns M, Kursula P. A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding. BMC Struct Biol 2007; 11: 24.

Braverman N, Dodt G, Gould SJ, Valle D. An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum Mol Genet 1998; 7: 1195-1205.

Lee JR, Jang HH, Park JH, Jung JH, Lee SS, Park SK et al. Cloning of two splice variants of the rice PTS1 receptor, OsPex5pL and OsPex5pS, and their functional characterization using pex5-deficient yeast and Arabidopsis. Plant J 2006; 47: 457-466.

Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A et al. The Mammalian Peroxin Pex5pL, the Longer Isoform of the Mobile Peroxisome Targeting Signal (PTS) Type 1 Transporter, Translocates the Pex7p-PTS2 Protein Complex into Peroxisomes via Its Initial Docking Site, Pex14p. J Biol Chem 2000; 275: 21703-21714.

Lazarow PB. The import receptor Pex7p and the PTS2 targeting sequence. Biochim Biophys Acta 2006; 1763: 1599-1604.

Matsumura T, Otera H, Fujiki Y. Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. J Biol Chem 2000; 275: 21715-21721.

Galland N, Demeure F, Hannaert V, Verplaetse E, Vertommen D, Van der Smissen P et al. Characterization of the role of the receptors PEX5 and PEX7 in the import of proteins into glycosomes of Trypanosoma brucei. Biochim Biophys Acta 2007; 1773: 521-535.

Woodward AW, Bartel B. The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell 2005; 16: 573-583.

Gualdrón-López M, Michels PA. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei. Biochem. Biophys Res Commun 2013; 431: 98-103.

Ito R, Morita M, Takahashi N, Shimozawa N, Usuda N, Imanaka T et al. Identification of Pex5pM, and retarded maturation of 3-ketoacyl-CoA thiolase and acyl-CoA oxidase in CHO cells expressing mutant Pex5p isoforms. J Biochem 2005; 138: 781-790.

Honsho M, Hashiguchi Y, Ghaedi K, Fujiki Y. Interaction defect of the medium isoform of PTS1-receptor Pex5p with PTS2-receptor Pex7p abrogates the PTS2 protein import into peroxisomes in mammals. J Biochem 2011; 149: 203-210.

Amery L, Sano H, Mannaerts GP, Snider J, Van Looy J, Fransen M et al. Identification of Pex5p-related novel peroxisome-targeting signal 1 (PTS1)-binding proteins in mammals. Biochem J 2001; 357: 635-646.

Fransen M, Amery L, Hartig A, Brees C, Rabijns A, Mannaerts GP et al. Comparison of the PTS1- and Rab8b-binding properties of Pex5p and Pex5Rp/TRIP8b. Biochim Biophys Acta 2008; 1783: 864-873.

Kiel JA, Veenhuis M, van der Klei IJ. PEX genes in fungal genomes: common, rare or redundant. Traffic 2006; 7: 1291-1303.

Bankston JR, Camp SS, DiMaio F, Lewis AS, Chetkovich DM, Zagotta WN. Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 2012; 109: 7899-7904.

Santoro B, Hu L, Liu H, Saponaro A, Pian P, Piskorowski RA et al. TRIP8b regulates HCN1 channel trafficking and gating through two distinct C-terminal interaction sites. J Neurosci 2011; 31: 4074-4086.

Dammai V, Subramani S. The Human Peroxisomal Targeting Signal Receptor, Pex5p, Is Translocated into the Peroxisomal Matrix and Recycled to the Cytosol. Cell 2001; 105: 187-196.

Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE. Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J Biol Chem 2002; 278: 226-232.

Miyata N, Fujiki Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 2005; 25: 10822-10832.

Platta HW, Grunau S, Rosenkranz K, Girzalsky W,

Erdmann R. Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 2005; 7: 817-822.

Schliebs W, Girzalsky W, Erdmann R. Peroxisomal protein import and ERAD: variations on a common theme. Nat Rev Mol Cell Biol 2010; 11: 885-890.

Leon S, Goodman JM, Subramani S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. Biochim Biophys Acta 2006; 1763: 1552-1564.

Aitchison JD, Murray WW, Rachubinski RA. The carboxyl-terminal tripeptide Ala-Lys-Ile is essential for targeting Candida tropicalis trifunctional enzyme to yeast peroxisomes. J Biol Chem 1991; 266: 23197-23203.

Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 1989; 108: 1657-1664.

Brocard C, Hartig A. Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 2006; 1763: 1565-1573.

Chowdhary G, Kataya AR, Lingner T, Reumann S. Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis. BMC Plant Biol 2012; 12

Fodor K, Wolf J, Erdmann R, Schliebs W, Wilmanns M. Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol 2012; 10: e1001309.

Shiozawa K, Konarev PV, Neufeld C, Wilmanns M, Svergun DI. Solution structure of human Pex5.Pex14.PTS1 protein complexes obtained by small angle X-ray scattering. J Biol Chem 2009; 284: 25334-25342.

Petriv OI, Tang L, Titorenko VI, Rachubinski RA. A new definition for the consensus sequence of the peroxisome targeting signal type 2. J Mol Biol 2004; 341: 119-134.

Schliebs W, Kunau WH. PTS2 co-receptors: diverse proteins with common features. Biochim Biophys Acta 2006; 1763: 1606-1612.

Einwächter H, Sowinski S, Kunau WH, Schliebs W. Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep 2001; 2: 1035-1039.

Schäfer A, Kerssen D, Veenhuis M, Kunau WH, Schliebs W. Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Mol Cell Biol 2004; 24: 8895-8906.

Yang X, Purdue PE, Lazarow PB. Eci1p uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dci1p. Eur J Cell Biol 2001; 80: 126-138.

Titorenko VI, Nicaud JM, Wang H, Chan H, Rachubinski RA. Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J Cell Biol 2002; 156: 481-494.

Islinger M, Li KW, Seitz J, Völkl A, Lüers GH. Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes--evidence for a natural piggyback import mechanism in mammals. Traffic

; 10: 1711-1721.

Gunkel K, van Dijk R, Veenhuis M, van der Klei IJ. Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein sorting machinery. Mol Biol Cell 2004;

Klein AT, van Den Berg M, Bottger G, Tabak HF, Distel B. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 2002; 277: 25011-25009.

van der Klei IJ, Veenhuis M. PTS1-independent sorting of peroxisomal matrix proteins by Pex5p. Biochim Biophys Acta 2006; 1763: 1794-1800.

Gouveia AM, Guimaraes CP, Oliveira ME, Sa-Miranda C, Azevedo JE. Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. J Biol Chem 2003; 278: 4389-4392.

Grunau S, Schliebs W, Linnepe R, Neufeld C, Cizmowski C, Reinartz B et al. Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 2009 10: 451-460.

Azevedo JE, Schliebs W. Pex14p, more than just a docking protein. Biochim Biophys Acta 2006; 1763: 1574-1584.

Williams C, Distel B. Pex13p: docking or cargo handling protein? Biochim Biophys Acta 2006; 1763: 1585-1591.

Pires JR, Hong X, Brockmann C, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H et al. The ScPex13p SH3 Domain Exposes Two Distinct Binding Sites for Pex5p and Pex14p. J Mol Biol 2003; 326: 1427-1435.

Schell-Steven A, Stein K, Amoros M, Landgraf C, Volkmer-Engert R, Rottensteiner H et al. Identification of a novel, intraperoxisomal pex14-binding site in pex13: association of pex13 with the docking complex is essential for peroxisomal matrix protein import. Mol Cell Biol 2005; 25: 3007-3018.

Douangamath A, Filipp FV, Klein AT, Barnett P, Zou P, Voorn-Brouwer T et al. Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain. Mol Cell 2002; 10: 1007-1017.

Niederhoff K, Meindl-Beinker NM, Kerssen D, Perband U, Schäfer A, Schliebs W, Kunau WH. Yeast Pex14p possesses two functionally distinct Pex5p and one Pex7p binding sites. J Biol Chem 2005; 280: 35571-35578.

Williams C, van den Berg M , Distel B. Saccharomyces cerevisiae Pex14p contains two independent Pex5p binding sites, which are both essential for PTS1 protein import. FEBS Lett 2005; 579: 3416-3420.

Smith JJ, Szilard RK, Marelli M, Rachubinski RA. The peroxin Pex17p of the yeast Yarrowia lipolytica is associated peripherally with the peroxisomal membrane and is required for the import of a subset of matrix proteins. Mol Cell Biol 1997; 17: 2511-2520.

Managadze D, Würtz C, Wiese S, Schneider M, Girzalsky W, Meyer HE et al. Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa. Eur J Cell Biol 2010; 89: 955-964.

Opaliński L, Kiel JA, Homan TG, Veenhuis M, van der Klei IJ. Penicillium chrysogenum Pex14/17p--a novel component of the peroxisomal membrane that is important for penicillin production. FEBS J 2010; 277: 3203-3218.

Peraza-Reyes L, Arnaise S, Zickler D, Coppin E, Debuchy R, Berteaux-Lecellier V. The importomer peroxins are differentially required for peroxisome assembly and meiotic development in Podospora anserina: insights into a new peroxisome import pathway. Mol Microbiol 2011; 82: 365-377.

Brennand A, Rigden DJ, Michels PA. Trypanosomes contain two highly different isoforms of peroxin PEX13 involved in glycosome biogenesis. FEBS Lett 2012; 586: 1765-1771.

Gouveia AM, Reguenga C, Oliveira ME, Sa-Miranda C, Azevedo JE. Characterization of peroxisomal Pex5p from rat liver: Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J Biol Chem 2000; 275: 32444-32451.

Kunau W. Peroxisomes: The extended shuttle to the peroxisome matrix. Curr Biol 2001; 11: R659-R662.

Girzalsky W, Platta HW, Erdmann R. Protein transport across the peroxisomal membrane. Biol Chem 2009; 390: 745-751.

Erdmann R, Schliebs W. Peroxisomal matrix protein import: the transient pore model. Nat Rev Mol Cell Biol 2005; 6: 738-742.

Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B. Saccharomyces cerevisiae PTS1 Receptor Pex5p Interacts with the SH3 Domain of the Peroxisomal Membrane Protein Pex13p in an Unconventional, Non-PXXP-related Manner. Mol Biol Cell 2000; 11: 3963-3976.

Natsuyama R, Okumoto K, Fujiki Y. Pex5p stabilizes Pex14p: a study using a newly isolated pex5 CHO cell mutant, ZPEG101. Biochem J 2013; 449: 195-207.

Cyr N, Madrid KP, Strasser R, Aurousseau M, Finn R, Ausio J et al. Leishmania donovani peroxin 14 undergoes a marked conformational change following association with peroxin 5. J Biol Chem 2008; 283: 31488-31499.

Ma C, Schumann U, Rayapuram N, Subramani S. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol Biol Cell 2009; 20: 3680-3689.

Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R et al. The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 2010; 12: 273-277.

Walton PA, Hill PE, Subramani S. Import of stably folded proteins into peroxisomes. Mol Biol Cell 1995; 6: 675-683.

Wang D, Visser NV, Veenhuis M, Van Der Klei IJ. Physical interactions of the peroxisomal targeting signal 1-receptor, Pex5p, studied by fluorescence correlation spectroscopy. J Biol Chem 2003; 278: 43340 - 43345.

Ma C, Hagstrom D, Polley SG, Subramani S. Redox regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem 2013; 288: 27220-27231.

Agne B, Meindl NM, Niederhoff K, Einwächter H, Rehling P, Sickmann A et al. Pex8p. An intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 2003; 11: 635-646.

Freitas MO, Francisco T, Rodrigues TA, Alencastre IS, Pinto MP, Grou CP et al. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J Biol Chem 2011; 286: 40509-40519.

Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M et al. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 2014; 15: 94-103.

Wang X, Herr RA, Hansen TH. Ubiquitination of substrates by esterification. Traffic 2012; 13: 19-24.

Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sa-Miranda C et al. Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 2007; 282: 31267-31272.

Kragt A, Voorn-Brouwer T, van den Berg M, Distel B. The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells. J Biol Chem 2005; 280: 7867-7874.

Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y. Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 2011; 12: 1067-1083.

Williams C, van den Berg M, Sprenger RR, Distel B. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 2007; 282: 22534-22543.

Platta HW, Debelyy MO, El Magraoui F, Erdmann R. The AAA peroxins Pex1p and Pex6p function as dislocases for the ubiquitinated peroxisomal import receptor Pex5p. Biochem Soc Trans 2008; 36: 99-104.

Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 2007; 177: 197-204.

Williams C, van den Berg M, Panjikar S, Stanley WA, Distel B, Wilmanns M. Insights into ubiquitin-conjugating enzyme/ co-activator interactions from the structure of the Pex4p:Pex22p complex. EMBO J 2012; 31: 391-402.

El Magraoui F, Brinkmeier R, Schrötter A, Girzalsky W,

Müller T, Marcus K et al. Distinct ubiquitination cascades act on the peroxisomal targeting signal type 2 co-receptor Pex18p. Traffic 2013; 14: 1290-1301.

Hensel A, Beck S, El Magraoui F, Platta HW, Girzalsky W, Erdmann R. Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 2011; 286: 43495-43505

Liu X, Subramani S. Unique requirements for mono- and polyubiquitination of the peroxisomal targeting signal co-receptor, Pex20. J Biol Chem 2013; 288: 7230-7240.

Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE et al. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem 2008; 283: 14190-

Gualdrón-López M, Chevalier N, van der Smissen P, Courtoy PJ, Rigden DJ, Michels PA. Ubiquitination of the glycosomal matrix protein receptor PEX5 in Trypanosoma brucei by PEX4 displays novel features. Biochim Biophys Acta 2013; 1833: 3076-3092.

Platta HW, El Magraoui F, Baumer BE, Schlee D, Girzalsky W, Erdmann R. Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 2009; 29: 5505-5516.

Williams C, van den Berg M, Geers E, Distel B. Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. Biochem Biophys Res Commun 2008; 374: 620-624.

El Magraoui F, Bäumer BE, Platta HW, Baumann JS, Girzalsky W, Erdmann R. The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner. FEBS J 2012; 279: 2060-2070.

Hazra PP, Suriapranata I, Snyder WB, Subramani S. Peroxisome Remnants in pex3Delta Cells and the Requirement of Pex3p for Interactions Between the Peroxisomal Docking and Translocation Subcomplexes. Traffic 2002; 3: 560-574.

Kaur N, Zhao Q, Xie Q, Hu J. Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins(F). J Integr Plant Biol 2013; 55: 108-120.

Rosenkranz K, Birschmann I, Grunau S, Girzalsky W, Kunau WH, Erdmann R. Functional association of the AAA complex and the peroxisomal importomer. FEBS J 2006; 273: 3804-3815.

Saffian D, Grimm I, Girzalsky W, Erdmann R. ATP-dependent assembly of the heteromeric Pex1p-Pex6p-complex of the peroxisomal matrix protein import machinery. J Struct Biol 2012; 179: 126-132.

Tamura S, Shimozawa N, Suzuki Y, Tsukamoto T, Osumi T, Fujiki Y. A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p. Biochem Biophys Res Commun 1998; 245: 883-886.

Tamura S, Yasutake S, Matsumoto N, Fujiki Y. Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p. J Biol Chem 2006; 281: 27693-27704.

Birschmann I, Stroobants AK, van den Berg M, Schäfer A, Rosenkranz K, Kunau WH et al. Pex15p of Saccharomyces cerevisiae Provides a Molecular Basis for Recruitment of the AAA Peroxin Pex6p to Peroxisomal Membranes. Mol Biol Cell

; 14: 2226-2236.

Goto S, Mano S, Nakamori C, Nishimura M. Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 Is a Peroxin That Recruits the PEX1-PEX6 Complex to Peroxisomes. Plant Cell 2011; 23: 1573-1587.

Matsumoto N, Tamura S, Fujiki Y. The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol 2003; 5: 454-460.

Nashiro C, Kashiwagi A, Matsuzaki T, Tamura S, Fujiki Y. Recruiting Mechanism of the AAA peroxins, Pex1p and Pex6p, to Pex26p on Peroxisome Membrane. Traffic 2011; 12: 774-788.

Fujiki Y, Nashiro C, Miyata N, Tamura S, Okumoto K. New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. Biochim Biophys Acta 2012; 1823: 145-149.

Grimm I, Saffian D, Platta HW, Erdmann R. The AAA-type ATPases Pex1p and Pex6p and their role in peroxisomal matrix protein import in Saccharomyces cerevisiae. Biochim Biophys Acta 2012; 1823: 150-158.

Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y. AWP1/ZFAND6 Functions in Pex5 Export by Interacting with Cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 2012; 13: 168-183.

Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE et al. Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem 2011; 286: 28223-28234.

Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF et al. Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on the ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 2012; 287: 12815-12827.

Grou CP, Carvalho AF, Pinto MP, Huybrechts SJ, Sa-Miranda C, Fransen M et al. Properties of the ubiquitin-Pex5p thiol ester conjugate. J Biol Chem 2009; 284: 10504-10513.

Kiel JA, Emmrich K, Meyer HE, Kunau WH. Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 2005; 280: 1921-1930.

Platta HW, Girzalsky W, Erdmann R. Ubiquitination of the peroxisomal import receptor Pex5p. Biochem J 2004; 384: 37-45.

Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: To the exportomer and beyond. Biochimie 2014: doi: 10.1016/j.biochi.2013.1012.1009.

Leon S, Subramani S. A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. J Biol Chem 2007; 282: 7424-7430.

Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ. The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import. Mol Cell Biol 2000; 20: 7516-7526.

Dodt G, Gould SJ. Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: Evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 1996; 135: 1763-1774.

van der Klei IJ, Hilbrands RE, Kiel JAKW, Rasmussen SW, Cregg JM, Veenhuis M. The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. EMBO J 1998; 17: 3608-3618.

Zolman BK, Monroe-Augustus M, Silva ID, Bartel B. Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 2005; 17: 3422-3435.

Zolman BK, Bartel B. An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci U S A 2004; 101: 1786-1791.

Ebberink MS, Mooijer PA, Gootjes J, Koster J, Wanders RJ, Waterham HR. Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 2011; 32: 59-69.

Braverman NE, D`Agostino MD, Maclean GE. Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives. Dev Disabil Rev 2013; 17: 187-196.

Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P et al. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 1995; 9: 115-125.

Ebberink MS, Mooyer PA, Koster J, Dekker CJ, Eyskens FJ, Dionisi-Vici C et al. Genotype-phenotype correlation in PEX5-deficient peroxisome biogenesis defective cell lines. Hum Mutat 2009; 30: 93-98.

Shimozawa N, Imamura A, Zhang Z, Suzuki Y, Orii T, Tsukamoto T et al. Defective PEX gene products correlate with the protein import, biochemical abnormalities, and phenotypic heterogeneity in peroxisome biogenesis disorders. J Med Genet 1999; 36: 779-781.

Salido E, Pey AL, Rodriguez R, Lorenzo V. Primary hyperoxalurias: Disorders of glyoxylate detoxification. Biochim Biophys Acta 2012; 1822: 1453-1464.

Motley A, Lumb MJ, Oatey PB, Jennings PR, De Zoysa PA, Wanders RJ et al. Mammalian alanine/glyoxylate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1. J Cell Biol 1995; 131: 95-109.

Gosh D, Berg JM. A proteome-wide perspective on peroxisome targeting signal 1(PTS1)-Pex5p affinities. J Am Chem Soc 2010; 132: 3973-3979.

van Woerden CS, Groothoff JW, Wijburg FA, Duran M, Wanders RJ, Barth PG et al. High incidence of hyperoxaluria in generalized peroxisomal disorders. Mol Genet Metab 2006; 88: 346-350.

Cochat P, Fargue S, Harambat J. Primary hyeroxaluria type 1: strategy for organ transplantation. Curr Opin Organ Transplant. 2010; 15: 590-593.

Salido E, Rodriguez-Pena M, Santana A, Beatie SG, Petry H, Torres A. Phenotypic correction of a mouse model for primary hyperoxaluria with adeno-associated virus gene transfer. Mol Ther 2011; 19: 870-875.

Kurochkin IV, Mizuno Y, Konagaya A, Sakaki Y, Schönbach C, Okazaki Y. Novel peroxisomal protease Tysnd1 processes PTS1- and PTS2-containing enzymes involved in beta-oxidation of fatty acids. EMBO J 2007; 26: 835-845.

Okumoto K, Kametani Y, Fujiki Y. Two proteases, Tysnd1 and PsLon, cooperatively regulate fatty-acid {beta}-oxidation in the peroxisomal matrix. J Biol Chem 2011; 286: 44367-44379.

Schuhmann H, Huesgen PF, Gietl C, Adamska I. The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis. Plant Physiol. 2008 148: 1847-1856.

Mizuno Y, Ninomiya Y, Nakachi Y, Iseki M, Iwasa H, Akita M et al. Tysnd1 deficiency in mice interferes with the peroxisomal localization of PTS2 enzymes, causing lipid metabolic abnormalities and male infertility. PLoS Genet 2013; 9: e1003286.

Kokotas H, Kroupis C, Chiras D, Grigoriadou M, Lamnissou K, Petersen MB et al. Biomarkers in primary open angle glaucoma. Clin Chem Lab Med 2012; 50: 2107-2119.

Kwon YH, Fingert JH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med 2009; 360: 1113-1124.

Resch ZT, Fautsch MP. Glaucoma-associated myocilin: a better understanding but much more to learn. Exp Eye Res 2009; 88: 704-712.

Shepard AR, Jacobson N, Millar JC, Pang IH, Steely HT, Searby CC et al. Glaucoma-causing myocilin mutants require the Peroxisomal targeting signal-1 receptor (PTS1R) to elevate intraocular pressure. Hum Mol Genet 2007; 16: 609-617.

Zode GS, Kuehn MH, Nishimura DY, Searby CC, Mohan K, Grozdanic SD et al. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest 2011; 121: 3542-3553.

Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006; 355: 1345-1356.

Abrahamsen H, Stenmark H, Platta HW. Ubiquitination and phosphorylation of Beclin 1 and its binding partners: Tuning class III phosphatidylinositol 3-kinase activity and tumor suppression. FEBS Lett 2012; 586: 1584-1591.

Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett 2010; 584: 1287-1295.

Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21-35.

Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol 2013; 15: 1186-1196.

Jones JM, Morrell JC, Gould SJ. PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J Cell Biol 2004; 164: 57-67.

Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303.

Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26: 1749-1760.

Lazarow PB. Viruses exploiting peroxisomes. Curr Opin Microbiol 2011; 14: 458-469.

Mohan KV, Atreya CD. Novel organelle-targeting signals in viral proteins. Bioinformatics 2003; 19: 10-13.

Mohan KV, Som I, Atreya CD. Identification of a type 1 peroxisomal targeting signal in a viral protein and demonstration of its targeting to the organelle. J Virol 2002; 76: 2543-2547.

Yelina NE, Erokhina TN, Lukhovitskaya NI, Minina EA, Schepetilnikov MV, Lesemann DE et al. Localization of Poa semilatent virus cysteine-rich protein in peroxisomes is dispensable for its ability to suppress RNA silencing. J Gen Virol 2005; 86: 479-489.

Liu LX, Margottin F, Le Gall S, Schwartz O, Selig L, Benarous R et al. Binding of HIV-1 Nef to a novel thioesterase enzyme correlates with Nef-mediated CD4 down-regulation. J Biol Chem 1997; 272: 13779-13785.

Wolff T, O'Neill RE, Palese P. Interaction cloning of NS1-I, a human protein that binds to the nonstructural NS1 proteins of influenza A and B viruses. J Virol 1996; 70: 5363-5372.

Gualdrón-López M, Brennand A, Hannaert V, Quiñones W, Cáceres AJ, Bringaud F et al. When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 2012; 42: 1-20.

Galland N, Michels PA. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Eur J Cell Biol 2010; 89: 621-637.

Sampathkumar P, Roach C, Michels PA, Hol WG. Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei peroxin 5. J Mol Biol 2008; 381: 867-880.



  • There are currently no refbacks.

Copyright (c) 2014 Harald W Platta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.