AIMP1 negatively regulates PPARγ: Implication in adipogenesis

Jong Hyun Kim1,2, Jung Min Han3,4, Sunghoon Kim1,2,5

1Medicinal Bioconvergence Research Center, Seoul National University, Seoul151-742, South Korea
2College of Pharmacy, Seoul National University, Seoul151-742, South Korea
3Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 120-749, South Korea
4College of Pharmacy, Yonsei University, Incheon 406-840, South Korea
5Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Technology, Seoul National University, Seoul 151-742, South Korea

Correspondence: Jung Min Han or Sunghoon Kim
E-mail: jhan74@yonsei.ac.kr or sungkim@snu.ac.kr
Received: October 21, 2014
Published online: December 07, 2014

The regulation mechanism of peroxisome proliferator-activated receptor γ (PPARγ) known as key determinant in adipogenesis is important for understanding the cause of lipid metabolic disorders and glucose metabolic syndromes. In a recent paper published in Journal of Cell Science, we demonstrated that aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) is a novel negative regulator of PPARγ. Although AIMP1 is originally found as an associated factor within multi-tRNA synthetase complex for translation, it has been shown to play regulatory roles in diverse cellular processes. Now AIMP1 is shown to negatively regulates PPARγ-mediated transcription through direct interaction with DNA-binding domain of PPARγ and inhibits adipogenesis. These results suggest that AIMP1 functions as a novel inhibitor of PPARγ, raising the possible linkage between translation and adipogenesis.

Keywords: AIMP1; aminoacyl-tRNA synthetase; PPARγ; adipogenesis

Negative regulation of adipogenesis by AIMP1

AIMP1 has been identified as one of non-enzymatic factors associated with multi-aminoacyl-tRNA synthetase (ARS) complex, which consists of nine different aminoacyl-tRNA synthetase enzymes [1, 2] and three non-enzymatic factors [3, 4]. AIMP1 regulates the stability of the ARS complex through protein-protein interaction [5, 6]. It is also highly detected in pancreatic β cells, from which it is secreted to maintain glucose homeostasis [7]. AIMP1 knockout mice show hypoglycemia in vivo [7]. During adipogenic differentiation of 3T3-L1 cells, the expression of genes encoding ten different tRNA synthetases, glutamyl-prolyl-tRNA synthetase (EPRS), methionyl-tRNA synthetase (MRS), isoleucyl-tRNA synthetase (IRS), valyl-tRNA synthesis (VRS), tryptophanyl-tRNA synthetase (WRS), aspartyl-tRNA synthetase (DRS), arginyl-tRNA synthetase (RRS), leucyl-tRNA synthetase (LRS), glycyl-tRNA synthetase (GRS), and histidyl-tRNA synthetase (HRS), and that of genes encoding two AIMPs, AIMP2 and AIMP3 was decreased. These findings suggest that aminoacyl-tRNA synthesis and ATP consumption is decreased during adipogenesis. However, the expression pattern of the gene encoding AIMP1 was different from that of genes encoding AIMP2 and AIMP3. The mRNA and protein expression of AIMP1 shows dynamic alteration during adipogenesis in which mRNA expression maximizes at 4-6 days and protein expression peaks at 6-8 days after differentiation [8]. During adipogenesis, AIMP1 is clearly localized in the nucleus. Accumulation of intracellular lipid
and triglyceride (TG) content was increased in AIMP1-deficient MEF and preadipocyte transfected with AIMP1 siRNA. Reversely, overexpression of AIMP1 in 3T3-L1 preadipocyte and mouse epididymal fat pads attenuated adipogenesis.

Negative regulation of PPARγ by AIMP1

PPARγ belongs to the nuclear hormone receptor super family [9]. PPARγ forms a heterodimer with retinoid X receptor (RXR) and ligand binding to either PPARγ or RXR can change the conformation of this heterodimer, favoring release of co-repressors and recruitment of co-activators [10]. This heterodimer induces the expression of target genes via specific binding with PPAR response elements (PPREs) in the promoter regions. AIMP1 interacts with the DNA binding domain of PPARγ and inhibits its transcriptional activity. The complex between PPARγ and AIMP1 prevented the binding of PPARγ to PPRE and inhibits the expression of target genes such as aP2, LPL, and glycerol kinase (Gyk) [8].

The potential application of AIMP1 as a therapeutic target

We identified AIMP1 as a novel inhibitor of PPARγ which is a key master regulator of adipogenesis. The enhancement of AIMP1 expression by chemicals or gene introduction or PPARγ inhibition by AIMP1 mimetics may suppress lipid accumulation and attenuates the risks of obesity. Thus, the understanding of the regulation of PPARγ by AIMP1 provides a novel pharmacological space to deal with metabolic syndrome such as obesity.

Acknowledgments

This work was supported by the Global Frontier Project grant (NRF-M3A6A4-2010-0029785, NRF-M3A6A4072536), by the Basic Science Research Program (2012R1A1A2040060) of the National Research Foundation, funded by the Ministry of Science, ICT &Future Planning (MSIP) of Korea, and by the Yonsei University Global Specialization Project of 2014.

Conflict of interest

The authors declare there is no conflict of interest.

References

2. Mirande M, Gache Y, Le Corre D, Waller JP. Seven mammalian aminoacyl-tRNA synthetases co-purified as high molecular weight entities are associated within the same complex. EMBO J 1982; 1:733-736.