Beta-2-adrenergic receptor methylation influences asthma phenotype in the school inner city asthma study

Jonathan M. Gaffin¹,², Wanda Phipatanakul¹,³

¹Harvard Medical School, Boston, MA, United States
²Division of Respiratory Diseases, Boston Children’s Hospital, Boston, MA, United States
³Division of Allergy and Immunology, Boston Children’s Hospital, Boston, MA, United States

Correspondence: Jonathan M. Gaffin
E-mail: jonathan.gaffin@childrens.harvard.edu
Received: October 24, 2013
Published online: January 15, 2014

Asthma is the most common chronic illness of childhood and inner city residents suffer a disproportionately high rate of asthma diagnosis and asthma morbidity. The School Inner City Asthma Study investigates the school classroom based environmental exposures that may lead to asthma morbidity in inner city school children with asthma. Within this cohort, we investigated the role of methylation at the promoter region of the beta-2-adrenergic receptor in relation to asthma morbidity. We found that high levels of methylation in the region studied was significantly associated with decreased report of dyspnea and trended towards significance for lower levels of asthma symptoms and airway obstruction. This Research Highlight discusses the findings of the recent study and the investigators’ active research endeavors.


Copyright: © 2014 The Authors. Licensed under a Creative Commons Attribution 4.0 International License which allows users including authors of articles to copy and redistribute the material in any medium or format, in addition to remix, transform, and build upon the material for any purpose, even commercially, as long as the author and original source are properly cited or credited.
is the primary target for rescue therapy, such as albuterol, during asthma exacerbations. Despite this, the beta-2-adrenergic receptor (ADRB2) gene has had inconsistent results when evaluated for relationships to asthma susceptibility [6], severity and lung function [7, 8].

In our recent study entitled “beta-2 adrenergic receptor gene methylation is associated with decreased asthma severity in Inner-City School Children” [9] we undertake an epigenetic approach to the question of whether the ADRB2 gene is associated with asthma symptom severity in a cohort of highly phenotyped children with asthma in the School Inner City Asthma Study [10] (NIAID R01AI073964; PI Phipatanakul). Over a 2 year period, 177 school aged children provided DNA samples at the time of phenotypic assessment of their asthma and enrollment in the School Inner City Asthma Study.

There was relatively low percent methylation of the ADRB2 over the region investigated, ranging from 1-6%. However, even with the small range of percent methylation, we found that the average methylation at the promoter region of the ADRB2 gene was inversely associated with asthma symptom severity. This association was statistically significant for a measure of reported shortness of breath over the previous 4 weeks and trended toward significance for multiple measures of asthma symptoms and lung function.

These findings are an important step in understanding how epigenetic changes to the ADRB2 gene may influence asthma symptoms in children. Moreover, these findings present tangible evidence that epigenetic changes may influence clinically relevant phenotypic variation.

Our research group is vigorously working to understand the role of the environment in the development [3,11,12], exacerbation and control of asthma in children. Inner city children suffer a disproportionate high level of asthma prevalence and asthma morbidity [13-15]. In addition to known variation based on race, ethnicity and socioeconomic factors, environmental exposures specific to the inner city are likely to play a critical role in asthma prevalence and morbidity [16]. Through major efforts from NIAID the effect of inner city-specific allergen exposures on asthma morbidity in children have been well described [17-19], however there is relatively little information on the effect of the indoor classroom environment on the respiratory health of children with asthma. This is an important source of exposure given that children spend 6-10 hours of their day in this environment. The School Inner City Asthma Study (R01 AI 073964 and R01 AI 073964-02S1; PI Phipatanakul) is an epidemiologic study of the effect of environmental exposures in school classrooms and asthma morbidity in inner city school children [20]. Students with asthma are screened and recruited from entire urban elementary schools. Eligible students with asthma undergo extensive phenotyping at a baseline visit and then report on their health quarterly through the academic year. During the study period, one home visit and two classroom visits collect air and dust samples for each enrolled child to evaluate their personal exposure to environmental allergens, endotoxin, mold, and air pollutants. In this manner, the child’s personal environment to the level of the school classroom can be related to their asthma morbidity.

To date, our group has demonstrated significant exposures to mouse [21,22] dog, and cat allergens [23], mold [22], endotoxin [24] and air pollution [25] in the classrooms. We have begun to explore genetic and epigenetic [9] predisposition to asthma morbidity and the environment-host interaction in relation to disease. We look forward to reporting our health outcome results in the near future.

Conflicting interests
The authors have declared that no competing interests exist.

Acknowledgements
Funding for this research was provided by the American Thoracic Society Fellow Career Development Award, which was made possible by an educational grant from GlaxoSmithKline and Boston Children’s Hospital Pipeline Grant, and by grants K23AI106945-01 (PI: Gaffin), K24 AI 106822, R01 AI 073964 and R01 AI 073964-02S1 (PI: Phipatanakul) from the National Institutes of Health. This work was conducted with support from Harvard Catalyst | The Harvard Clinical and Translational Science Center (NIH Award #UL1 RR 025758 and financial contributions from Harvard University and its affiliated academic health care centers). The content is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Catalyst, Harvard University and its affiliated academic health care centers, the National Center for Research Resources, or the National Institutes of Health.

References
4. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-