Down regulation of acrolein on corticosterone secretion in male rats

Jou-Chun Chou1,2, Yung Hsing Yeh1,7, Ting-Chun Weng1, Christina Soong3, Sindy Hu4,5, Fu-Kong Lieu3, Galina Idoa6, Paulus S. Wang1,7,8,9, Shyi-Wu Wang4,10

1Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC
2Department of Life Sciences, National Chung Hsing University, Taichung 40254, Taiwan, ROC
3Department of Rehabilitation, Chen Hsin General Hospital, Taipei 11220, Taiwan, Republic of China
4Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan, ROC
5Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
6State Scientific Research Institute of Physiology and Basic Medicine, Timacova Street, 4, Novosibirsk 630117, Russia
7Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC
8Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan, ROC
9Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
10Department of Physiology and Pharmacology, Chang Gung University, Taoyuan 33333, Taiwan, ROC

Correspondence: Jou-Chun Chou
E-mail: jackie3975@gmail.com
Received: July 13, 2016
Published online: August 29, 2016

Acrolein is a small unsaturated aldehyde and can be found in a wide range of resources including all types of smoke and exhaust gases from gasoline engines. Although the toxicity and damage of acrolein have been recognized, the action mechanisms of acrolein, especially that of acrolein on the response of stresshormones are still unclear. The present study hypothesized that administration of acrolein altered the secretion of both adrenocorticotropin (ACTH) and corticosterone via the regulation of steroid biosynthetic pathway in rat zona fasciculata-reticularis (ZFR) cells. Both in vivo and in vitro approaches were used. In the in vivo study, intra-peritoneal injection of acrolein (2 mg/ml/kg) once daily for 1 or 3 days resulted in a reduction of plasma levels of ACTH and corticosterone as well as the intracellular cAMP and ACTH-induced secretion of corticosterone. The protein expression of ACTH receptor (ACTHR) in rat ZFR cells was also reduced by 40-60% after treatment of acrolein for 1 day and 3 days, respectively. In the in vitro study, rat ZFR cells were prepared and challenged with ACTH (10⁻⁹ M), forskolin (a phosphodiesterase activator, 10⁻⁵ M), 8-Br-cAMP (a permeable synthetic cAMP, 5x10⁻⁵ M), 25-OH-cholesterol (10⁻⁵ M) ± trilostane (an inhibitor of 3β-hydroxysteroid dehydrogenase, 3β-HSD, 10⁻⁵ M). The evoked release of corticosterone by ACTH, forskolin, 8-Br-cAMP and the induced release of pregnenolone in response to 25-OH-cholesterol plus trilostane were decreased. Since the accumulation of pregnenolone after blocking 3β-HSD by trilostane represents the ratio of P450sec, the rate-limiting step of steroid biosynthesis, we suggest that not only the cAMP pathway was inhibited, but also the enzyme activity of P450sec was attenuated following administration of acrolein. Although insignificant, the protein expression of steroidogenic acute regulatory protein (StAR) decreased by 40% in ZFR cells after treatment of acrolein in vivo. Incubation of ZFR cells with acrolein (10⁻⁹~10⁻⁷ M) also decreased the in vitro release of corticosterone. These results suggest that administration of acrolein inhibited corticosterone production via the attenuation of cAMP pathway, STAR protein expression, and the enzyme activity of P450sec. The attenuation of protein expression of ACTHR (also named melanocortin 2 receptor, MC2R) and reduced secretion of ACTH indicated that the hypothalamus-pituitary-adrenal (H-P-A) axis was also down-regulated by the administration of acrolein.
Keywords: acrolein; corticosterone; rats; ZFR cells; ACTH; forskolin; 8-Br-cAMP; StAR; P450scc, MC2R; H-P-A axis

Copyright: © 2016 The Authors. Licensed under a Creative Commons Attribution 4.0 International License which allows users including authors of articles to copy and redistribute the material in any medium or format, in addition to remix, transform, and build upon the material for any purpose, even commercially, as long as the author and original source are properly cited or credited.

It is well known that acrolein is a toxic pollutant in air pollution [1]. The sources of air pollution include smoke, wastes of industry, drugs, or fried food [2, 3, 4]. Some toxic effects of acrolein have been mentioned, e.g. rapidly bind to and deplete cellular nucleophiles, inhibit the production of proinflammatory cytokines [5], and suppress the activation of NFκB [6]. Although the levels of gonadotropin are not changed, the levels of plasma testosterone are altered under long-term exposure to cigarette smoke [7]. The histology of testes has revealed that portion of Leydig cells is decreased by the long-term exposure of cigarette smoke [7]. Since glucocorticoid is also an important steroid hormone associated with metabolic and immunologic responses [8], we suspect that the biosynthesis and release of glucocorticoids might be altered by the exposure of acrolein. In the present study, we hypothesized that acrolein may alter the secretion of corticosterone via a direct action on the adrenocortical cells.

In order to confirm the effect of acrolein on the pituitary-adrenal axis, both in vivo and in vitro studies were performed. The concentrations of adrenocorticotropin (ACTH) in plasma and that of corticosterone in plasma and media following cell culture were measured by radioimmunoassay. The protein expressions of ACTH receptor (ACTHR) and steroidogenic acute regulatory protein (StAR) were analyzed by the western blots. The levels of pregnenolone in media and that of intracellular cAMP were detected by enzyme immunoassays. In the in vivo study, male Sprague-Dawley rats were intraperitoneal injected with or without acrolein (2 mg/ml/kg) once daily for 1 or 3 days before catheterization via right jugular vein and challenged with a single injection of ACTH (5 μg/ml). The control rats received normal saline. Blood samples were collected through catheters continuing the following 2 h. The result showed that the plasma concentrations of corticosterone were rapidly stimulated by ACTH within 10 min. Administration of acrolein dose-dependently attenuated the increase of corticosterone release in response to ACTH challenge. But pre-treatment of acrolein for 3 days resulted in higher basal level of corticosterone. During ACTH challenge the total secretion of corticosterone was decreased and the corticosterone response to ACTH was delayed.

In the in vitro study, rats were decapitation after exposure to acrolein for 0, 1 and 3 days. Rat blood samples were collected and the concentrations of both corticosterone and ACTH were measured by RIA. The zona fasciculata-reticularis cells (ZFR) were prepared and cultured in vitro with or without ACTH, 8-Br-cAMP, or forskolin. Administration of acrolein resulted in a significant decrease of plasma levels of corticosterone and ACTH as well as in vitro release of corticosterone in response to ACTH, 8-Br-cAMP, or forskolin, and the protein expression of ACTHR in ZFR cells. The protein expressions of StAR were reduced by 40% and the levels of intracellular cAMP in response to forskolin were also reduced by 18-32% following administration of acrolein. Pre-treatment of acrolein 3 days decreased the enzyme activity of P450scc via the release of pregnenolone following incubation of ZFR cells with trilostane (a blocker of 3β-hydroxysteroid dehydrogenase, 3β HSD). Incubation of rat ZFR cells with acrolein (10^9–10^7 M) in vitro decreased the basal and ACTH-induced release of corticosterone.

In the present study, we have demonstrated that administration of acrolein either in vivo or in vitro decreased the secretion of corticosterone. Our in vivo data indicated that administration of acrolein increased the basal level of plasma corticosterone, but attenuated the corticosterone secretion in response to ACTH including the maxium response and total amount of corticosterone release during 2 hours. The in vitro data indicated that acrolein inhibited the biosynthesis of corticosterone via the mechanisms including the down regulation of the generation and function of cAMP, P450scc activity, and the protein expressions of ACTH and StAR in rat ZFR cells. Although more pathways might be involved, the evidence of our study revealed that acrolein is toxic for our endocrine and immune systems. The down regulation of glucocorticoid production may inhibit the anti-inflammatory effects and induce a hyperfunction of immune system. Since acrolein is one of major pollutant during cigarette smoking, we expect to get more damage for endocrine and immune systems after long-term exposure of smoke from any sources. Many studies reported that the concentration of acrolein in mean ambient concentration is 14.3 μg/m³ (6.2 ppb) ranging from 8.2 to 24.6 μg/m³ (3.6 to 10.7 ppb) and the exhaust gases from gasoline engines and diesel engines are 0.05-27.7
mg/m³ and 0.12-0.21 mg/m³, respectively [9]. The indoor level of acrolein is generally ranged from 2.3 to 275 μg/m³. Mainstream smoke contains the level of acrolein between 10 and 140 μg per cigarette, and side-stream smoke may reach the higher level of 100-1700 μg per cigarette [9]. We did not detect the real level of acrolein in rat circulation after intraperitoneal injection of acrolein (2 mg/ml/kg), whereas this dosage for 3 days was enough to induce a serious negative effects on glucocorticoid biosynthesis. More investigations in the immune system and other physiological systems in response to acrolein might be helpful or useful to prevent the damage caused by smoke, from either cigarette or gasoline engines.

Conflicting interests

The authors have declared that no conflict of interests exist.

Author contributions

J.-C.C. wrote, prepared and finalized the manuscript, Y.-H.Y. and T.-C.W. performed the experiments, C.S. and S.H. performed data and statistical analyses, G.I. edited the manuscript and data interpretation, F.-K.L., P.S.W. and S.-W.W conceived, designed and supervised the experiments.

Abbreviations

ACTH: adrenocorticotropic; 3β-HSD: 3β hydroxysteroid dehydrogenase; MC2R: melano 2 corpin receptor; StAR: steroidogenic acute regulatory protein; ZFR: zona faciculate-reticularis; H-P-A axis: hypothalamus-pituitary-adrenal axis.
References

