The antagonist SPECT tracer 123I-iododexetimide binds preferentially to the muscarinic M_1 receptor in-vivo, but is it also a potential tool to assess the occupancy of muscarinic M_1 receptors by agonists?

Geor Bakker1,2, Nora Chekrouni2, Wilhelmina A. M. Vingerhoets1,2, Jan-Peter van Wieringen2, Kora de Bruin2, Jos Eersels2, Jan de Jong2, Youssef Chahid2, Oswald J. Bloemen1, Thérèse A. van Amelsvoort1, Jan Booij2

1Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands

2Department of Nuclear Medicine, Academic Medical Centre, University of Amsterdam, P.O.Box 22660, 1100 DD Amsterdam, The Netherlands

Correspondence: Geor Bakker, E-mail: Geor.bakker@maastrichtuniversity.nl

Received: December 11, 2015

Published online: January 25, 2016

Cognitive deterioration in neuropsychiatric disorders is associated with high attrition rates giving an urgent need to develop better pharmaceutical therapies. The underlying mechanisms of cognitive impairments are unclear but research has shown that the muscarinic receptor subtype 1 (M_1 receptor) plays a critical role. Blocking the M_1 receptor gives rise to profound cognitive deficits, while the administration of M_1 agonist drugs improves cognitive functioning. In this research highlight we will outline supporting data that the radiotracer 123I-iododexetimide preferentially binds to the M_1 receptor in-vivo and can be used to assess changes in M_1 receptor expression in-vivo associated with cognitive decline. These findings come from a previously published paper extensively examining binding characteristics of $^{123/125}$I-iododexetimide to muscarinic receptors. Results of biodistribution studies also has shown that acute administration of the M_1 receptor agonist xanomeline could inhibit 127I-iododexetimide binding in M_1-rich brain areas in rats, suggesting that 123I-iododexetimide may also be used to evaluate the occupancy of M_1 receptors by M_1 agonists in-vivo. This may be of clinical relevance considering the efficacy of M_1 agonist drugs in the treatment of cognitive deficits. Here we show the results from new biodistribution experiments in rats conducted to test the hypothesis that 123I-iododexetimide may be a useful radiotracer to evaluate the M_1 receptor occupancy by M_1 agonists in-vivo. Contrary to our expectations, no significant change in 127I-iododexetimide ex-vivo binding was observed after acute administration of xanomeline in M_1 receptor-rich brain areas, whereas significantly decreased 123I-iododexetimide binding was found after chronic treatment with xanomeline. 123I-iododexetimide single photon emission computed tomography (SPECT) may therefore be a useful imaging tool to further evaluate M_1 receptor changes in neuropsychiatric disorders, as a potential stratifying biomarker, to assess the occupancy of M_1 receptors after M_1 antagonist treatment, or after chronic treatment with M_1 agonists, although it may be less suited to evaluate the M_1 receptor occupancy after acute treatment with M_1 agonists. Future studies should concentrate efforts towards finding also an M_1 agonist radiotracer for positron emission tomography (PET) or SPECT to assess the working mechanism of M_1 agonists.

Keywords: 123I-iododexetimide; SPECT; muscarinic M_1 receptor agonist; xanomeline; cognition; rat

To cite this article: Geor Bakker, et al. The antagonist SPECT tracer 123I-iododexetimide binds preferentially to the muscarinic M_1 receptor in-vivo, but is it also a potential tool to assess the occupancy of muscarinic M_1 receptors by agonists? Receptor Clin Invest 2016; 3: e1163. doi: 10.14800/rci.1163.
Introduction

There are longstanding implications that the muscarinic system, as part of the cholinergic system, plays a critical role in cognition [1]. Administration of cholinergic receptor antagonists give profound cognitive deficits, and cholinesterase inhibitors are broadly prescribed to maintain and improve cognition in neuropsychiatric disorders like Alzheimer’s disease [2]. It is thought these deficits are mediated, at least partly, by the muscarinic receptor subtype 1 (M₁ receptor) due to its high expression in prefrontal cortex, hippocampus, and striatum, which are brain regions critical for cognition [3-5]. Moreover, muscarinic M₁ receptor knock out animals showed deficits in learning and memory [6-8]. There is also preliminary evidence that changes in M₁ expression may be the underlying pathophysiology of cognitive deterioration in schizophrenia and related disorders. Importantly, a hallmark post mortem study found 75% reduction in M₁ receptor density in a frontal brain area in a subgroup of patients with schizophrenia compared to healthy controls, which they termed muscarinic receptor deficiency schizophrenia or MRDS [9, 10]. Also, it has been suggested that particularly this subgroup of schizophrenic patients may suffer from cognitive deficits. In addition, clinical pilot studies examining effects of M₁ agonists and positive allosteric modulators (PAM) show improved scores on cognitive test batteries [11-13]. However, measuring the M₁ agonists and PAMs may improve cognition [11-13].

Binding profile of ¹²⁷/¹²³I-iododexetimide to muscarinic receptor subtypes

Series of in-vitro competitive binding studies were conducted to assess binding affinity and functional antagonism of ¹²⁷I-iododexetimide for all five human muscarinic receptor subtypes overexpressed on Chinese hamster ovarian (CHO) cell membranes [17]. The affinity was determined by the displacement of ³H-n-methylscopolamine, a highly selective M₁ antagonist [18], by ¹²⁷I-iododexetimide. Results revealed that the affinity of ¹²⁷I-iododexetimide of binding to the M₁ receptor subtype was in the Pico molar range. Regarding selectivity, the affinity of ¹²⁷I-iododexetimide towards the M₁ receptor was much higher compared to the other subtypes. In addition, ¹²⁷I-iododexetimide binding to the M₁ receptor showed the highest affinity to antagonize acetylcholine activated receptor subtypes. Bio distribution studies in rats corroborated these findings by showing that ¹²⁷I-iododexetimide could be displaced by the M₁₄ selective agonist xanomeline in a dose dependent manner. To validate binding selectivity of ¹²⁷I-iododexetimide to muscarinic receptors, further studies were conducted in control and KO mice for each muscarinic receptor subtype. Results showed that only in KO mice of the M₁ receptor the ¹²⁷I-iododexetimide binding was significantly decreased in the M₁ receptor-rich frontal cortex (Figure 1).

Finally, bio distribution studies in rats were performed to evaluate whether the antipsychotic olanzapine, which has a high affinity for M₁ receptors (Kᵢ = 1.9 nM) [19] and acts as an antagonist, was able to block ¹²⁷I-iododexetimide binding in M₁-rich brain areas ex-vivo. Phosphor storage imaging was conducted to measure brain distribution of ¹²⁷I-iododexetimide concurrent with administration of olanzapine [20]. As expected, acute administration of the M₁ antagonist olanzapine resulted in a significant decrease of ¹²⁷I-iododexetimide binding in M₁-rich brain areas.
All things considered, it was concluded that 123I-iododexetimide preferentially binds to M$_1$ receptors in vivo as an antagonist SPECT tracer.

Current experiments: Can 123I-iododexetimide SPECT be used to assess the occupancy of M$_1$ by agonist drugs?

Background

Since M$_1$ agonists and PAMs may improve cognition [11-13], we were interested to test whether the antagonist M$_1$ SPECT tracer 123I-iododexetimide may be useful in future imaging studies to evaluate the occupancy of M$_1$ receptors by M$_1$ agonists, like xanomeline. As described earlier, we already showed that the acute administration of xanomeline was able to block 127I-iododexetimide binding dose dependently ex vivo in rats [17]. In these experiments, liquid chromatography-mass spectroscopy (LC-MS/MS) was used to assess 127I-iododexetimide binding. An advantage of this technique is that the measurement is not influenced by metabolites that are formed after injection in rats. Contrary, using storage phosphor imaging, the formation of 123I-labelled metabolites in rats could influence the outcome measurement. However, in clinical practice, 123I-iododexetimide instead of 127I-iododexetimide is used, and consequently results of studies using the SPECT tracer 123I-iododexetimide may reflect clinical practice better than results obtained with 127I-iododexetimide. Therefore, we conducted additional studies to evaluate whether acute and/or chronic treatment of xanomeline was able to reduce 123I-iododexetimide binding in rat brains. Based on our previous results [17], we hypothesized that acute, but not chronic, administration of xanomeline would decrease 123I-iododexetimide binding in M$_1$-rich brain areas.

Methods

We used storage phosphor imaging to study the effects of acute and chronic administration of xanomeline on 123I-iododexetimide binding in M$_1$ receptor-rich brain areas. In brief, 16 male Wistar rats (average weight approximately 320 gram) received a single dose of xanomeline (n=8; dose 3 mg/kg body weight intraperitoneally) or placebo (0.3 ml saline; n=8) acutely, whereas 16 other male rats were pre-treated with xanomeline (twice a day 3 mg/kg) or placebo for 14 days. One hour after drug treatment in the acute group, and 24 h after the final injection in the chronic group the rats were anesthetized, injected intravenously in a tail vein with approximately 50 MBq 123I-iododexetimide (synthesis, specific activity and radiochemical purity as previously described; [17, 21]) and sacrificed as previously described [17]. Then, binding of 123I-iododextimide was determined with storage phosphor imaging as earlier described [17]. For analysis, regions of interest (ROIs) were drawn manually for the prefrontal cortex, hippocampus and striatum, areas rich in M$_1$ receptors, as earlier described [3, 17]. Binding in the cerebellum was chosen as the non-specific region because of the low muscarinic acetylcholine receptor expression in this area. According to our previous study, the ratio of specific to non-specific binding was used as the...
outcome measure \cite{11}. Differences in hippocampal, prefrontal and striatal 123I-iododexetimide binding ratios for both the xanomeline and placebo treatment was analysed using a one-way multivariate analysis of variance (MANOVA).

Results

The acute group showed no significant decrease in 123I-iododexetimide binding ratios for all M_1 receptor-rich brain areas examined, whereas the chronic group did show significantly lower binding ratios in all these brain areas (Figure 2).

Discussion

The current bio distribution studies in rats showed that 123I-iododexetimide binding ratios were not significant lower after acute administration of xanomeline as compared to the placebo condition. This finding was unexpected, since we previously showed that the acute administration of xanomeline was able to block 127I-iododexetimide binding dose dependently as assessed ex-vivo in rats. In more detail, a single dose of 127I-iododexetimide decreased e.g., the specific to non-specific binding ratio (which is the outcome measure of our current storage phosphor imaging study) in the frontal binding by approximately 20\% (Figure 3). In addition, in our previous study, 127I-iododexetimide binding was determined 40 min after injection, while in the current study, the rats were killed 2 h after injection of 123I-iododexetimide. Also, in our previous study LC-MS/MS was used (which measurement is not influenced by metabolites formed after injection in rats), while in the current study we used storage phosphor imaging. These factors might explain why we did not observe a decreased 123I-iododexetimide binding ratio in our present study after an acute dose of 3 mg/kg xanomeline. We cannot exclude, however, that we will find reduced 123I-iododexetimide binding ratios after administration of a higher dose than 3 mg/kg. However, the question then remains whether such results would be translatable to humans, because the dose used in this study was already high compared to doses used in human trials \cite{13, 22}. So, since the storage phosphor measurements using the SPECT tracer 123I-iododexetimide may reflect the clinical practice better than results obtained with 127I-iododexetimide, we conclude that it is not likely that 123I-iododexetimide SPECT is a useful tool to assess the occupancy of M_1 receptors after acute administration of an agonist like xanomeline.

Since 123I-iododexetimide itself is a M_1 receptor antagonist, this might explain why 123I-iododexetimide may not be the ideal radiotracer to assess occupancy of the M_1 receptor by M_1 agonists. Commonly, the occupancy of receptors is much higher when therapeutic doses of antagonists are used as compared to agonists. It is therefore possible that a M_1 receptor agonist radiotracer could better serve as a potential tracer to assess the occupancy of M_1 receptors by M_1 agonists, and further research is needed.

Figure 2. Binding potential of 123I-iododexetimide in ROIs of prefrontal cortex, striatum and hippocampus. Binding potential was calculated as specific binding (total binding minus nonspecific binding) in ROI divided by nonspecific binding (measured in cerebellum). 123I-iododexetimide binding was measured 2 h after intravenous injection of 123I-iododexetimide. Upper panel (acute experiment): Rats (n= 8/group) were pre-treated with 1 dose of saline or xanomeline (3 mg/kg) 1 h before injection with radiotracer. Lower panel (chronic experiment): Rats (n= 8/group) were pre-treated for 14 days with 2 doses of saline or xanomeline (3 mg/kg) per day until 24 h before injection with radiotracer. *Statistically significantly lower as compared with control group.
to explore this possibility. Importantly, the development of \(M_1 \) agonist radiotracers for positron emission tomography (PET) imaging has started [23, 24].

Interestingly, (sub) chronic administration of xanomeline did induce significantly lower \(123^I \)-iododexetimide binding ratios, possibly reflecting down-regulation of \(M_1 \) receptors. It is well known that agonists can induce down-regulation of receptors on the cell membrane [25, 26]. Consequently, \(123^I \)-iododexetimide SPECT might be a promising tool to assess the long-term effects of \(M_1 \) agonists on \(M_1 \) receptor expression.

Future directions

PET or SPECT imaging of \(M_1 \) receptors is highly important to fully understand the role of \(M_1 \) receptors in cognitive symptoms such as seen in schizophrenia. Cognitive deficits are the best established predictors of functional disability in this disorder [27]. In this regard, our data suggest that \(123^I \)-iododexetimide SPECT may be a useful imaging tool to further evaluate \(M_1 \) receptor changes in neuropsychiatric disorders, as a potential stratifying biomarker, or to assess the occupancy of \(M_1 \) receptors of \(M_1 \) antagonists or after chronic treatment with \(M_1 \) agonists like xanomeline, although it may be less suited to evaluate efficacy of agonist drugs. Indeed, we recently started a clinical study in which we will examine the existence of MDRS using \(123^I \)-iododexetimide SPECT. However cognitive deficits in schizophrenia as well as in other neuropsychiatric disorders have proven difficult to treat and therefore more research on \(M_1 \) agonists is needed. Future studies should concentrate efforts towards developing an adequate \(M_1 \) agonist radiotracer to get more insight into \(M_1 \) agonist functioning.

Finally, regarding studies on \(123^I \)-iododexetimde, it may be of interest in future studies to evaluate whether also the acute administration of other \(M_1 \) agonists than xanomeline will influence \(123^I \)-iododexetimide. Also, it may be of interest to test whether the \(123^I \)-iododexetimide binding is sensitive to changes in acetylcholine concentrations e.g., induced by cholinesterase inhibitors.

Conclusions

In conclusion, extensive characterisation of \(123^I \)-iododexetimide validates that its antagonistic in-vivo binding predominantly reflects binding to the \(M_1 \) receptor. Consequently \(123^I \)-iododexetimide SPECT may a useful means to assess \(M_1 \) receptors in-vivo related to cognitive deterioration in neuro-psychiatric disorders, such as Parkinson’s disease, Alzheimer’s disease and psychotic disorders, and to assess occupancy of \(M_1 \) receptors by antagonist \(M_1 \) drugs, although it may be less suited to assess efficacy and occupancy of the \(M_1 \) receptor of \(M_1 \) agonist drugs.
References

25. Xu J, Chuang DM. Muscarinic acetylcholine receptor-mediated phosphoinositide turnover in cultured cerebellar granule cells: desensitization by receptor agonists. J Pharmacol Exp Ther 1987 Jul; 242:238-244
