MicroRNA-135b as therapeutic target in cancers

Ching-Wen Lin, Tse-Ming Hong, Pan-Chyr Yang


MicroRNAs (miRNAs) are small non-coding RNAs that can negatively regulate gene expression at the post-transcriptional level through the RNA-induced silencing complex (RISC)-mediated inhibition. Because of the imperfect and short seed-binding region of the target sequences, miRNAs hold capacity for multi-targeting and are able to regulate a wide range of cellular functions and signaling. Numerous researches have revealed that dysregulated miRNAs are closely associated with cancer progression. Moreover, genome-wide screening shows that the expression profile of miRNAs can serve as biomarkers for early diagnosis, stratifying patient outcome, and predicting treatment efficiency for cancer patients. Hence, seeking and dissecting the detailed mechanisms of cancer-associated miRNA may provide a new avenue for cancer targeting therapy. This review discussed the current proposed mechanisms of miR-135b involvement in cancer progression and tissue differentiation, both of which are considered as functional equivalents. The regulatory network of miR-135b are also addressed to further clarify the potential oncogenic role of miR-135b.

Full Text:



Lin, C.W., Chang, Y.L., Chang, Y.C., Lin, J.C., Chen, C.C., Pan, S.H., Wu, C.T., Chen, H.Y., Yang, S.C., Hong, T.M., et al. 2013. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun 4:1877.

Wang, L.K., Hsiao, T.H., Hong, T.M., Chen, H.Y., Kao, S.H., Wang, W.L., Yu, S.L., Lin, C.W., and Yang, P.C. 2014. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma. PLoS One 9:e96765.

Yu, S.L., Chen, H.Y., Chang, G.C., Chen, C.Y., Chen, H.W., Singh, S., Cheng, C.L., Yu, C.J., Lee, Y.C., Chen, H.S., et al. 2008. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48-57.

Bhinge, A., Poschmann, J., Namboori, S.C., Tian, X., Jia Hui Loh, S., Traczyk, A., Prabhakar, S., and Stanton, L.W. 2014. MiR-135b is a direct PAX6 target and specifies human neuroectoderm by inhibiting TGF-beta/BMP signaling. EMBO J 33:1271-1283.

Miraoui, H., and Marie, P.J. 2010. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Sci Signal 3:re9.

Rosen, V. 2009. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 20:475-480.

Li, Z., Hassan, M.Q., Volinia, S., van Wijnen, A.J., Stein, J.L., Croce, C.M., Lian, J.B., and Stein, G.S. 2008. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 105:13906-13911.

Schaap-Oziemlak, A.M., Raymakers, R.A., Bergevoet, S.M., Gilissen, C., Jansen, B.J., Adema, G.J., Kogler, G., le Sage, C., Agami, R., van der Reijden, B.A., et al. 2010. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 19:877-885.

Romano, A., Conticello, C., Cavalli, M., Vetro, C., La Fauci, A., Parrinello, N.L., and Di Raimondo, F. 2014. Immunological Dysregulation in Multiple Myeloma Microenvironment. Biomed Res Int 2014:198539.

Xu, S., Cecilia Santini, G., De Veirman, K., Vande Broek, I., Leleu, X., De Becker, A., Van Camp, B., Vanderkerken, K., and Van Riet, I. 2013. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One 8:e79752.

Gregory, C.A., Ylostalo, J., and Prockop, D.J. 2005. Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental "niches" in culture: a two-stage hypothesis for regulation of MSC fate. Sci STKE 2005:pe37.

Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147.

Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., 3rd, and Nusse, R. 2003. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448-452.

Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41-49.

Nagel, R., le Sage, C., Diosdado, B., van der Waal, M., Oude Vrielink, J.A., Bolijn, A., Meijer, G.A., and Agami, R. 2008. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795-5802.

Lowery, A.J., Miller, N., Devaney, A., McNeill, R.E., Davoren, P.A., Lemetre, C., Benes, V., Schmidt, S., Blake, J., Ball, G., et al. 2009. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 11:R27.

Tong, A.W., Fulgham, P., Jay, C., Chen, P., Khalil, I., Liu, S., Senzer, N., Eklund, A.C., Han, J., and Nemunaitis, J. 2009. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16:206-216.

Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., and Piccolo, S. 2013. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047-1059.

Liu, C., Iqbal, J., Teruya-Feldstein, J., Shen, Y., Dabrowska, M.J., Dybkaer, K., Lim, M.S., Piva, R., Barreca, A., Pellegrino, E., et al. 2013. MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood 122:2083-2092.

Arigoni, M., Barutello, G., Riccardo, F., Ercole, E., Cantarella, D., Orso, F., Conti, L., Lanzardo, S., Taverna, D., Merighi, I., et al. 2013. miR-135b coordinates progression of ErbB2-driven mammary carcinomas through suppression of MID1 and MTCH2. Am J Pathol 182:2058-2070.

Wu, C.W., Ng, S.C., Dong, Y., Tian, L., Ng, S.S., Leung, W.W., Law, W.T., Yau, T.O., Chan, F.K., Sung, J.J., et al. 2014. Identification of microRNA-135b in Stool as a Potential Noninvasive Biomarker for Colorectal Cancer and Adenoma. Clin Cancer Res 20:2994-3002.

Valeri, N., Braconi, C., Gasparini, P., Murgia, C., Lampis, A., Paulus-Hock, V., Hart, J.R., Ueno, L., Grivennikov, S.I., Lovat, F., et al. 2014. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 25:469-483.

Phua, L.C., Chue, X.P., Koh, P.K., Cheah, P.Y., Chan, E.C., and Ho, H.K. 2014. Global fecal microRNA profiling in the identification of biomarkers for colorectal cancer screening among Asians. Oncol Rep 32:97-104.

Wu, W., Wang, Z., Yang, P., Yang, J., Liang, J., Chen, Y., Wang, H., Wei, G., Ye, S., and Zhou, Y. 2014. MicroRNA-135b regulates metastasis suppressor 1 expression and promotes migration and invasion in colorectal cancer. Mol Cell Biochem 388:249-259.

Hallstrand, T.S., Hackett, T.L., Altemeier, W.A., Matute-Bello, G., Hansbro, P.M., and Knight, D.A. 2014. Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clin Immunol 151:1-15.

Halappanavar, S., Nikota, J., Wu, D., Williams, A., Yauk, C.L., and Stampfli, M. 2013. IL-1 receptor regulates microRNA-135b expression in a negative feedback mechanism during cigarette smoke-induced inflammation. J Immunol 190:3679-3686.

Halappanavar, S., Jackson, P., Williams, A., Jensen, K.A., Hougaard, K.S., Vogel, U., Yauk, C.L., and Wallin, H. 2011. Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: a toxicogenomic study. Environ Mol Mutagen 52:425-439.

Bourdon, J.A., Saber, A.T., Halappanavar, S., Jackson, P.A., Wu, D., Hougaard, K.S., Jacobsen, N.R., Williams, A., Vogel, U., Wallin, H., et al. 2012. Carbon black nanoparticle intratracheal installation results in large and sustained changes in the expression of miR-135b in mouse lung. Environ Mol Mutagen 53:462-468.

O'Neill, L.A. 2008. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10-18.

DiDonato, J.A., Mercurio, F., and Karin, M. 2012. NF-kappaB and the link between inflammation and cancer. Immunol Rev 246:379-400.

Matsuyama, H., Suzuki, H.I., Nishimori, H., Noguchi, M., Yao, T., Komatsu, N., Mano, H., Sugimoto, K., and Miyazono, K. 2011. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood 118:6881-6892.

Lee, H., Herrmann, A., Deng, J.H., Kujawski, M., Niu, G., Li, Z., Forman, S., Jove, R., Pardoll, D.M., and Yu, H. 2009. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15:283-293.

Zhao, B., Li, L., Lei, Q., and Guan, K.L. 2010. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24:862-874.

Johnson, R., and Halder, G. 2014. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13:63-79.

Huang, W., Lv, X., Liu, C., Zha, Z., Zhang, H., Jiang, Y., Xiong, Y., Lei, Q.Y., and Guan, K.L. 2012. The N-terminal phosphodegron targets TAZ/WWTR1 for SCFbeta-TrCP dependent degradation in response to PI3K inhibition. J Biol Chem.

Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A.R., Poletti, A., et al. 2011. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759-772.

Bartucci, M., Dattilo, R., Moriconi, C., Pagliuca, A., Mottolese, M., Federici, G., Benedetto, A.D., Todaro, M., Stassi, G., Sperati, F., et al. 2014. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene.

Mohseni, M., Sun, J., Lau, A., Curtis, S., Goldsmith, J., Fox, V.L., Wei, C., Frazier, M., Samson, O., Wong, K.K., et al. 2014. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol 16:108-117.

Pan, D. 2010. The hippo signaling pathway in development and cancer. Dev Cell 19:491-505.

Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R., and Anderson, D.G. 2014. Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541-555.

Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F., and Wong, K.K. 2014. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14:535-546.

DOI: http://dx.doi.org/10.14800/rd.410


  • There are currently no refbacks.

Copyright (c) 2014 Ching-Wen Lin, Tse-Ming Hong, Pan-Chyr Yang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.