RESEARCH HIGHLIGHT

miR-33a, an important marker and putative therapeutic target in chronic HBV-induced fibrosis

Chuan-Feng Huang1,2, Cheng-Chao Sun1, Fang Zhao3, Ya-Dong Zhang4, De-Jia Li1

1Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
2Department of Basic Medicine, Nanyang Medical College, Nanyang 473003, China
3Department of Cardiovascular Medicine, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430071, China
4Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China

Correspondence: De-Jia Li
E-mail: dejiali2007@gmail.com
Received: November 10, 2014
Published online: December 09, 2014

To investigate the roles and mechanisms of miR-33a in liver fibrosis, miR-33a expression in whole liver and serum samples was measured from chronic hepatitis B (CHB) patients by quantitative real-time PCR (qRT-PCR). In addition, Human and murine primary liver fibrosis-associated cells were isolated and treated with transforming growth factor-β1 (TGF-β1). We found that miR-33a expression levels in liver tissue significantly increased with a fibrosis progression manner in the human liver. Furthermore, serum miR-33a levels associated positively with progressing process of hepatic fibrosis. miR-33a was in particular increased in hepatic stellate cells (HSC) than other liver fibrosis-associated cells. Stimulation of HSCs with TGF-β1 leads to a critical increase of miR-33a. Increasing miR-33a levels increased (whereas inhibiting miR-33a weakened) the activation role of TGF-β1 in LX-2 cells, which might be a potential mechanism through moderating Smad7 expression. Altogether, data suggest that miR-33a may be a novel marker for HSC activation and hepatic fibrosis progression, suggesting a new therapeutic target in liver fibrosis.

To cite this article: Chuan-Feng Huang, et al. miR-33a, an important marker and putative therapeutic target in chronic HBV-induced fibrosis. RNA Dis 2014; 1: e416. doi: 10.14800/rnd.416.

Liver fibrosis is the late stage of different chronic liver diseases, and in China, chronic hepatitis B virus (HBV) infection has been identified as the main cause of liver fibrosis. Fibrosis is characterized by excessive production and deposition of extracellular matrix (ECM) proteins, mainly the type I collagen that is synthesized by hepatic stellate cells (HSCs) after various fibrogenic stimulation1,2. Growing evidence has demonstrated that transforming growth factor-β1 (TGF-β1) plays a central role in liver fibrosis.3,4 However, despite advanced knowledge in understanding the pathophysiology of hepatic fibrosis, the underlying mechanisms of this process remain unclear.

A microRNA (miRNA) is a small newly discovered endogenous non-coding RNA molecule that contains 18–25 nucleotides and perform as post-transcriptional regulators of target genes by binding to the 3’untranslated region (3’UTR) mRNA.5-7 microRNA-33a (miR-33a) recently has become a hot research small miRNA and it has been demonstrated that it not only regulates lipid homeostasis8-11, but also may be exerting as a potent tumor suppressor12, cell proliferation and cycling13. Moreover, Li et al.14 recently demonstrated that miR-33a-associated HSC activation and extracellular matrix production was, at least in part, modulated by the activation of the PI3K/Akt pathway and PPAR-α in vitro, and they found that the expression of miR-33a was associated with the progression of liver fibrosis. However, the role and mechanism of miR-33a on
hepatic fibrosis is largely unknown.

In this work we investigated the profibrogenic effects and associated mechanisms of miR-33a in hepatic fibrosis. Our results showed that serum and hepatic miR-33a levels increased with the progression of liver fibrosis in CHB patients and expression of miR-33a was significantly upregulated in primary hepatocytes and hepatic stellate cells from C57BL/6 murine hepatic fibrosis models as previously described [15-17]. Moreover, miR-33a expression in HSCs is higher than another fibrosis-associated cell hepatocytes (e.g., LX-2, HepG2 and Huh7 cells), both of which were isolated from human and mice liver. Interestingly, the expression pattern of miR-33a in the human or mice hepatocyte was not altered after TGF-β1 treatment. These results confirm that miR-33a expression was specifically expressed in the activation process of hepatic stellate cells, and suggest that miR-33a is regulated in whole liver extracts in mice and human hepatic fibrosis, which was not dependent on the type of experimental model of liver fibrosis.

A growing amount of evidence has demonstrated that TGF-β1 and its activation role of HSCs plays a central role in the progression of hepatic fibrosis [18]. Our results shown that TGF-β1 modulates miR-33a expression in a dose- and time-dependent manner in HSCs, increasing miR-33a levels increased (whereas inhibition miR-33a decreased) TGF-β1-induced collagen I (Col1A1) and alpha-smooth muscle actin (α-SMA) protein levels in HSCs, mRNA expression of Col1A1 and α-SMA was exerted in a manner similar to miR-33a expression. These results indicate that the profibrotic effects of miR-33a might be modulated by modulation of TGF-β1-associated signaling pathway. TGF-β1 predominantly activates hepatic stellate cells (HSC) via the TGF-β1/Smad signaling pathway, thus resulting in liver fibrosis [19, 20]. Our results first showed that TGF-β1-induced miR-33a expression and miR-33a alternately stimulated TGF-β1-induced HSC fibrogenic activation by targeting the inhibitory Smad, Smad7. However, Smad7 inhibition might not be the only mechanisms about miR-33a profibrogenic effects. Thus, it needs further investigation in the future.

According to our results, we assume that miR-33a is, at least in part, a novel signaling pathway that modulates TGF-β1-dependent induction of ECM genes (e.g., ColA1, α-SMA) in hepatic stellate cells during liver fibrosis. To our knowledge, this study is the first clinical investigation to identify miR-33a is a hepatic fibrogenesis associated microRNA molecules. Overall, our findings imply that miR-33a plays a central role in the pathogenesis of hepatic fibrosis and is a new marker for clinical diagnosis, which may be developed as a potential therapeutic target in treating liver fibrosis. However, in the current study, the scale of this study was too small, a large sample size is needed for future investigations.

In summary, we found that miR-33a might be a new marker for hepatic stellate cell activation and hepatic fibrogenesis processes in both humans and mice. MiR-33a could be used to exploit future diagnostic and therapeutic tools to treat liver fibrosis.

References


