Mycoplasma hyorhinis: a potential risk factor in gastric cancer progression

Hongying Duan¹,², Xianglei He², Chengchao Shou¹

¹Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
²Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang 310014, China

Correspondence: Chengchao Shou
E-mail: shouchengchao@gmail.com
Received: October 23, 2014
Published online: December 17, 2014

Persistent infection of *Mycoplasma hyorhinis* (*M. hyorhinis*) is associated with various types of cancer. However, the molecular mechanism of *M. hyorhinis* infection and its effect on cancer patients’ prognosis were unknown. Recently, we reported for the first time that *M. hyorhinis* infects mammalian cells via the interaction of its membrane protein p37 and the host protein Annexin A2 (ANXA2). And NF-κB pathway, a downstream of ANXA2, is activated and mediates *M. hyorhinis*-driven cell migration. Furthermore, we demonstrated that *M. hyorhinis* p37 protein expression in gastric cancer tissues positively correlates with tumor metastasis and predicts poor survival. In conclusion, our study uncovers the mechanism by which *M. hyorhinis* infects mammalian cells and promotes cancer cell migration and unveils the effect of *M. hyorhinis* infection on gastric cancer survival.

Keywords: Mycoplasma hyorhinis; gastric cancer; p37; Annexin A2; NF-κB

The association of *Mycoplasma hyorhinis* infection with cancer

Mycoplasmas, a genus of bacteria lacking cell wall, could colonize in host tissues for long time without any pathological effects. *Mycoplasma hyorhinis* (*M. hyorhinis*), belonging to mycoplasmas (Class Mollicutes), was first identified in swine in 1962 [1]. It causes respiratory tract infections, arthritis, and inflammation of abdominal cavity in swines [2]. *M. hyorhinis* is well-known as a common contaminant of cell cultures. The association of *M. hyorhinis* with human cancers, such as prostate, gastric, colon and ovarian cancer, has been reported in the past three decades [3-5]. For example, Namiki and colleagues reported the potential of *M. hyorhinis* infection to elicit malignant transformation of benign human prostate BPH-1 cells in cell culture and xenografts [3]. Additionally, *M. hyorhinis* increases the migratory and invasiveness of gastric cancer cells and melanoma cells [5, 6].

In 1980’s, Dong and his colleagues generated monoclonal antibody PD4 through immunizing mouse with gastric cancer cell MGC803 [7]. But the subsequent antigen identification work revealed that the molecule recognized by PD4 is a lipoprotein from *M. hyorhinis*, namely p37, which indicated *M. hyorhinis* being existed in cancer cells [8]. Using this antibody for immunohistochemistry (IHC), the positive rate was 56% (50/90) in gastric cancer, 28% (18/64) in chronic superficial gastritis, 30% (14/46) in gastric ulcer and 37% (18/49) in intestinal metaplasia [4]. In colon cancer, the positive rate was 55.1% (32/58), but 20.9% (10/49) in adenomas or polyp [4]. These results show a step-wise increase of the positive rate following disease progression.
To confirm the result of *M. hyorhinis* infection in cancer tissues, we performed qPCR and IHC with a new cohort of gastric cancer tissues and found that the IHC technique is reliable, whose specificity was 83.0% and the sensitivity was 75.6%. Recently, we found that *M. hyorhinis* infection positively correlated with blood vessel invasion and metastasis, and the patients infected with *M. hyorhinis* had a lower 5-year survival rate than that of uninfected patients. However, the association between *M. hyorhinis* infection and gastric cancer needs to be addressed by multi-centric studies. We also anticipate more interest and the work will be focused on this field in future.

Identification of the microbial and host factors mediating *M. hyorhinis* infection

Early studies demonstrated p37 as a major component of high-affinity transport system of *M. hyorhinis* [9, 10]. p37 shares partial homology to the hemagglutinin protein of influenza A [11], but it has no homology to any mammalian proteins. Pro-invasive function of p37 has been documented previously by our lab and others’ [11, 12], but the role of p37 in *M. hyorhinis* infection is unclear. In the recently published work on journal “Cancer Research”, we found that *M. hyorhinis* could infect both cancerous and noncancerous cells, while cancer cells were more prone to be infected. We also demonstrated that antibody anti-p37 could block the binding of *M. hyorhinis* to host cells in qPCR, cell ELISA and flow cytometry assays. Furthermore, *M. hyorhinis*-induced cell migration was also inhibited with the antibody against p37 protein. These results indicate that infection of mammalian cells by *M. hyorhinis* is p37-dependent. The N-terminal region (amino acids 2-23) of p37 was hydrophobic and has limited homology to proteins of other mycoplasma species [10]. We revealed that the peptide of this region could bind to gastric cancer cells, and blocked *M. hyorhinis* infection competitively. These results suggest that p37-mediated *M. hyorhinis* infection rely on its N-terminal region.

In the following work, we identified Annexin A2 (ANXA2) as a protein associated with p37 through their N-terminal region interaction. Using antibody to ANXA2 or small interfering RNA (siRNA) technique, we found that ANXA2 was required for *M. hyorhinis* infection. These results indicated that ANXA2 is a host receptor mediating *M. hyorhinis* infection. Several recent studies also reported the relationship between ANXA2 and microbial infection. For example, ANXA2 contributes to HPV16 infection [13], and is also involved in the formation of hepatitis C virus replication complex on the lipid raft [14]. Our findings demonstrate that ANXA2 contributes to *M. hyorhinis* infection through its interaction with p37 at their N-termini. Based on this discovering, the N-termini peptides of p37 or ANXA2 may provide therapeutic options to combat *M. hyorhinis* infection.

Tyr23 phosphorylation of ANXA2 is associated with its membrane localization under stress conditions [15]. We found that *M. hyorhinis* upregulated Tyr23 phosphorylation of ANXA2 and its membrane recruitment. It was reported that EGFR plays a role in regulating ANXA2 phosphorylation and localization [16]. Moreover, our previous work reported that both *M. hyorhinis* infection and recombinant p37 treatment could activate EGFR [5, 12], but the role of EGFR in *M. hyorhinis* infection and *M. hyorhinis*-induced metastasis are not fully elucidated. We noticed that ANXA2-EGFR interaction was increased and EGFR preferred to interact with phosphorylated ANXA2 in *M. hyorhinis*-infected cells. Several recent studies reported that EGFR plays a critical role in pathogen infection. EGFR is a cofactor for HCV entry and is a receptor for HCMV [17, 18], EGFR and HER2 function together as receptors for *C. albicans* [19]. Our findings added more evidence for the important role of EGFR in microbial infection.

Signaling pathway mediating *M. hyorhinis* induced cancer cell migration

We found that NF-κB signaling was activated by *M. hyorhinis* exposure and was required for *M. hyorhinis*-induced gastric cancer cell migration. Importantly, both ANXA2 and EGFR were upstream of NF-κB signaling in the context of *M. hyorhinis*. Epithelial-mesenchymal transition (EMT) has been recognized as an important step during cancer metastasis [20]. In our another recent study, we observed that *M. hyorhinis* induced EMT in gastric cancer MGC803, but not in AGS cells, indicating *M. hyorhinis*’ effect on EMT is cell type-dependent for gastric cancer cells [21]. Moreover, molecular markers indicative of EMT was altered upon *M. hyorhinis* infection in MGC803 cells. We found that these changes were TLR4-and NF-κB-dependent. Currently, we are trying to figure out the molecular mechanisms of *M. hyorhinis*-induced EMT and its contribution to cancer development.

Challenges and Perspectives

Understanding the molecule mechanisms of gastric cancer and identifying the risk factors are important for its prevention and patient-directed therapy. Our recently published work indicates a link between *M. hyorhinis* infection and the unfavorable outcome of gastric cancer patients. At the molecular level, we uncover the receptor and signaling pathways which mediates *M. hyorhinis* infection and *M. hyorhinis*-promoted malignancies. These data will provide several potential approaches for preventing *M. hyorhinis* infection. However, the role of *M. hyorhinis* infection in
tumorigenesis and the correlated effects of *M. hyorhinis* and *Helicobacter pylori* infection in gastric cancer development are unknown. It is very important to elucidate these issues for developing more potential strategies for prevention and treatment of gastric cancer.

Conflicting interests

The authors have declared that no competing interests exist.

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 91029713) and National Basic Research Program of China (No. 2015CB553906).

References